4.2 Übungen
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-Svar +Answer)) |
K (Robot: Automated text replacement (-Lösning +Solution)) |
||
Zeile 29: | Zeile 29: | ||
{{:4.2 - Figur - Rätvinklig triangel med vinkeln 50° och sidor x och 19}} | {{:4.2 - Figur - Rätvinklig triangel med vinkeln 50° och sidor x och 19}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:1|Solution a | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:1|Solution a |Solution 4.2:1a|Solution b |Solution 4.2:1b|Solution c |Solution 4.2:1c|Solution d |Solution 4.2:1d|Solution e |Solution 4.2:1e|Solution f |Solution 4.2:1f}} |
===Exercise 4.2:2=== | ===Exercise 4.2:2=== | ||
Zeile 51: | Zeile 51: | ||
|width="50%" | {{:4.2 - Figur - Likbent triangel med toppvinkeln v och sidor 2, 3 och 3}} | |width="50%" | {{:4.2 - Figur - Likbent triangel med toppvinkeln v och sidor 2, 3 och 3}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:2|Solution a | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:2|Solution a |Solution 4.2:2a|Solution b |Solution 4.2:2b|Solution c |Solution 4.2:2c|Solution d |Solution 4.2:2d|Solution e |Solution 4.2:2e|Solution f |Solution 4.2:2f}} |
===Exercise 4.2:3=== | ===Exercise 4.2:3=== | ||
Zeile 71: | Zeile 71: | ||
|width="33%" | <math>\cos{\left(-\displaystyle \frac{\pi}{6}\right)}</math> | |width="33%" | <math>\cos{\left(-\displaystyle \frac{\pi}{6}\right)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:3|Solution a | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:3|Solution a |Solution 4.2:3a|Solution b |Solution 4.2:3b|Solution c |Solution 4.2:3c|Solution d |Solution 4.2:3d|Solution e |Solution 4.2:3e|Solution f |Solution 4.2:3f}} |
===Exercise 4.2:4=== | ===Exercise 4.2:4=== | ||
Zeile 91: | Zeile 91: | ||
|width="33%" | <math>\tan{\left(-\displaystyle \frac{5\pi}{3}\right)}</math> | |width="33%" | <math>\tan{\left(-\displaystyle \frac{5\pi}{3}\right)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:4|Solution a | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:4|Solution a |Solution 4.2:4a|Solution b |Solution 4.2:4b|Solution c |Solution 4.2:4c|Solution d |Solution 4.2:4d|Solution e |Solution 4.2:4e|Solution f |Solution 4.2:4f}} |
===Exercise 4.2:5=== | ===Exercise 4.2:5=== | ||
Zeile 106: | Zeile 106: | ||
|width="25%" | <math>\tan{495^\circ}</math> | |width="25%" | <math>\tan{495^\circ}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:5|Solution a | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:5|Solution a |Solution 4.2:5a|Solution b |Solution 4.2:5b|Solution c |Solution 4.2:5c|Solution d |Solution 4.2:5d}} |
===Exercise 4.2:6=== | ===Exercise 4.2:6=== | ||
Zeile 115: | Zeile 115: | ||
|width="100%" | <center> {{:4.2 - Figur - Två trianglar med vinklar 45° resp. 60° och höjdskillnad x}} </center> | |width="100%" | <center> {{:4.2 - Figur - Två trianglar med vinklar 45° resp. 60° och höjdskillnad x}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:6|Solution | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:6|Solution |Solution 4.2:6}} |
===Exercise 4.2:7=== | ===Exercise 4.2:7=== | ||
Zeile 124: | Zeile 124: | ||
|width="100%" | <center> {{:4.2 - Figur - Älv}} </center> | |width="100%" | <center> {{:4.2 - Figur - Älv}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:7|Solution | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:7|Solution |Solution 4.2:7}} |
===Exercise 4.2:8=== | ===Exercise 4.2:8=== | ||
Zeile 134: | Zeile 134: | ||
|width="100%" | <center> {{:4.2 - Figur - Hängande stång}} </center> | |width="100%" | <center> {{:4.2 - Figur - Hängande stång}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:8|Solution | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:8|Solution |Solution 4.2:8}} |
===Exercise 4.2:9=== | ===Exercise 4.2:9=== | ||
Zeile 143: | Zeile 143: | ||
|width="100%" | <center> {{:4.2 - Figur - Bilväg från A till B via P och Q}} </center> | |width="100%" | <center> {{:4.2 - Figur - Bilväg från A till B via P och Q}} </center> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.2:9|Solution | | + | </div>{{#NAVCONTENT:Answer|Answer 4.2:9|Solution |Solution 4.2:9}} |
Version vom 11:22, 9. Sep. 2008
Exercise 4.2:1
Using the trigonometric functions, determine the length of the side marked\displaystyle \,x\,
Exercise 4.2:2
Determine a trigonometric equation that is satisfied by \displaystyle \,v\,.
Exercise 4.2:3
Determine
a) | \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)} | b) | \displaystyle \cos{2\pi} | c) | \displaystyle \sin{9\pi} |
d) | \displaystyle \cos{\displaystyle \frac{7\pi}{2}} | e) | \displaystyle \sin{\displaystyle \frac{3\pi}{4}} | f) | \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)} |
Exercise 4.2:4
Determine
a) | \displaystyle \cos{\displaystyle \frac{11\pi}{6}} | b) | \displaystyle \cos{\displaystyle \frac{11\pi}{3}} | c) | \displaystyle \tan{\displaystyle \frac{3\pi}{4}} |
d) | \displaystyle \tan{\pi} | e) | \displaystyle \tan{\displaystyle \frac{7\pi}{6}} | f) | \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)} |
Exercise 4.2:5
Determine
a) | \displaystyle \cos{135^\circ} | b) | \displaystyle \tan{225^\circ} | c) | \displaystyle \cos{330^\circ} | d) | \displaystyle \tan{495^\circ} |
Exercise 4.2:6
Determine the length of the side marked \displaystyle \,x\,.
|
Exercise 4.2:7
In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?
|
Exercise 4.2:8
A rod of length \displaystyle \,\ell\, hangs from two ropes of length \displaystyle \,a\, and \displaystyle \,b\, as shown in the figure. The ropes make angles \displaystyle \,\alpha\, and \displaystyle \,\beta\, with the vertical. Determine a trigonometric equation for the angle \displaystyle \,\gamma\, which the rod makes with the vertical.
|
Exercise 4.2:9
The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)
|