3.1 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Theory +Theorie)) |
K (Robot: Automated text replacement (-Answer +Antwort)) |
||
Zeile 21: | Zeile 21: | ||
|width="25%" | <math>\sqrt{\sqrt{3}}</math> | |width="25%" | <math>\sqrt{\sqrt{3}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:1|Solution a|Solution 3.1:1a|Solution b|Solution 3.1:1b|Solution c|Solution 3.1:1c|Solution d|Solution 3.1:1d}} |
===Übung 3.1:2=== | ===Übung 3.1:2=== | ||
Zeile 43: | Zeile 43: | ||
|width="25%" | <math>\sqrt[\scriptstyle3]{-125}</math> | |width="25%" | <math>\sqrt[\scriptstyle3]{-125}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:2|Solution a|Solution 3.1:2a|Solution b|Solution 3.1:2b|Solution c|Solution 3.1:2c|Solution d|Solution 3.1:2d|Solution e|Solution 3.1:2e|Solution f|Solution 3.1:2f|Solution g|Solution 3.1:2g}} |
===Übung 3.1:3=== | ===Übung 3.1:3=== | ||
Zeile 59: | Zeile 59: | ||
|width="50%" | <math>\sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr)</math> | |width="50%" | <math>\sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:3|Solution a|Solution 3.1:3a|Solution b|Solution 3.1:3b|Solution c|Solution 3.1:3c|Solution d|Solution 3.1:3d}} |
===Übung 3.1:4=== | ===Übung 3.1:4=== | ||
Zeile 75: | Zeile 75: | ||
|width="50%" | <math>\sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75}</math> | |width="50%" | <math>\sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:4|Solution a|Solution 3.1:4a|Solution b|Solution 3.1:4b|Solution c|Solution 3.1:4c|Solution d|Solution 3.1:4d}} |
===Übung 3.1:5=== | ===Übung 3.1:5=== | ||
Zeile 90: | Zeile 90: | ||
|width="25%" | <math>\displaystyle \frac{1}{\sqrt{17}-\sqrt{13}}</math> | |width="25%" | <math>\displaystyle \frac{1}{\sqrt{17}-\sqrt{13}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:5|Solution a|Solution 3.1:5a|Solution b|Solution 3.1:5b|Solution c|Solution 3.1:5c|Solution d|Solution 3.1:5d}} |
===Übung 3.1:6=== | ===Übung 3.1:6=== | ||
Zeile 106: | Zeile 106: | ||
|width="50%" | <math>\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}}</math> | |width="50%" | <math>\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:6|Solution a|Solution 3.1:6a|Solution b|Solution 3.1:6b|Solution c|Solution 3.1:6c|Solution d|Solution 3.1:6d}} |
===Übung 3.1:7=== | ===Übung 3.1:7=== | ||
Zeile 119: | Zeile 119: | ||
|width="33%" | <math>\displaystyle \sqrt{153}-\sqrt{68}</math> | |width="33%" | <math>\displaystyle \sqrt{153}-\sqrt{68}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:7|Solution a|Solution 3.1:7a|Solution b|Solution 3.1:7b|Solution c|Solution 3.1:7c}} |
===Übung 3.1:8=== | ===Übung 3.1:8=== | ||
Zeile 135: | Zeile 135: | ||
|width="50%" | <math>\sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\</math> or <math>\ \sqrt[\scriptstyle3]2\cdot3</math> | |width="50%" | <math>\sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\</math> or <math>\ \sqrt[\scriptstyle3]2\cdot3</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.1:8|Solution a|Solution 3.1:8a|Solution b|Solution 3.1:8b|Solution c|Solution 3.1:8c|Solution d|Solution 3.1:8d}} |
Version vom 09:25, 22. Okt. 2008
Übung 3.1:1
Write in power form
a) | \displaystyle \sqrt{2} | b) | \displaystyle \sqrt{7^5} | c) | \displaystyle \bigl(\sqrt[\scriptstyle3]{3}\,\bigr)^4 | d) | \displaystyle \sqrt{\sqrt{3}} |
Antwort
Solution a
Solution b
Solution c
Solution d
Übung 3.1:2
Write in simplest possible form.
a) | \displaystyle \sqrt{3^2} | b) | \displaystyle \sqrt{\left(-3\right)^2} | c) | \displaystyle \sqrt{-3^2} | d) | \displaystyle \sqrt{5}\cdot\sqrt[\scriptstyle3]{5}\cdot5 |
e) | \displaystyle \sqrt{18}\cdot\sqrt{8} | f) | \displaystyle \sqrt[\scriptstyle3]{8} | g) | \displaystyle \sqrt[\scriptstyle3]{-125} |
Antwort
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Solution g
Übung 3.1:3
Write in simplest possible form.
a) | \displaystyle \bigl(\sqrt{5}-\sqrt{2}\,\bigr)\bigl(\sqrt{5}+\sqrt{2}\,\bigr) | b) | \displaystyle \displaystyle \frac{\sqrt{96}}{\sqrt{18}} |
c) | \displaystyle \sqrt{16+\sqrt{16}} | d) | \displaystyle \sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr) |
Antwort
Solution a
Solution b
Solution c
Solution d
Übung 3.1:4
Write in simplest possible form.
a) | \displaystyle \sqrt{0{,}16} | b) | \displaystyle \sqrt[\scriptstyle3]{0{,}027} |
c) | \displaystyle \sqrt{50}+4\sqrt{20}-3\sqrt{18}-2\sqrt{80} | d) | \displaystyle \sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75} |
Antwort
Solution a
Solution b
Solution c
Solution d
Übung 3.1:5
Write as an expression without a root sign in the denominator.
a) | \displaystyle \displaystyle \frac{2}{\sqrt{12}} | b) | \displaystyle \displaystyle \frac{1}{\sqrt[\scriptstyle3]{7}} | c) | \displaystyle \displaystyle \frac{2}{3+\sqrt{7}} | d) | \displaystyle \displaystyle \frac{1}{\sqrt{17}-\sqrt{13}} |
Antwort
Solution a
Solution b
Solution c
Solution d
Übung 3.1:6
Write as an expression without a root sign in the denominator.
a) | \displaystyle \displaystyle \frac{\sqrt{2}+3}{\sqrt{5}-2} | b) | \displaystyle \displaystyle \frac{1}{\left(\sqrt{3}-2\right)^2-2} |
c) | \displaystyle \displaystyle \frac{\displaystyle \frac{1}{\sqrt{3}}-\displaystyle \frac{1}{\sqrt{5}}}{\displaystyle \frac{1}{\sqrt{2}}-\displaystyle \frac{1}{2}} | d) | \displaystyle \displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}} |
Antwort
Solution a
Solution b
Solution c
Solution d
Übung 3.1:7
Write in simplest possible form.
a) | \displaystyle \displaystyle \frac{1}{\sqrt{6}-\sqrt{5}} - \displaystyle \frac{1}{\sqrt{7}-\sqrt{6}} | b) | \displaystyle \displaystyle \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} | c) | \displaystyle \displaystyle \sqrt{153}-\sqrt{68} |
Antwort
Solution a
Solution b
Solution c
Übung 3.1:8
Determine which number is the larger:
a) | \displaystyle \sqrt[\scriptstyle3]5\ or \displaystyle \ \sqrt[\scriptstyle3]6 | b) | \displaystyle \sqrt7\ or \displaystyle \ 7 |
c) | \displaystyle \sqrt7\ or \displaystyle \ 2{.}5 | d) | \displaystyle \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ or \displaystyle \ \sqrt[\scriptstyle3]2\cdot3 |
Antwort
Solution a
Solution b
Solution c
Solution d