4.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{:4.2 - Figure - A right-angled triangle with angle 32° and sides x and 25}} +{{:4.2 - Bild - Ein rechteckiges Dreieck mit dem Winkel 32° und den Seiten x und 25}}))
K (Robot: Automated text replacement (-{{:4.2 - Figure - A right-angled triangle with angle 35° and sides 11 and x}} +{{:4.2 - Bild - Ein rechteckiges Dreieck mit dem Winkel 35° und den Seiten 11 und x}}))
Zeile 24: Zeile 24:
|-
|-
|e)
|e)
-
|width="50%" | {{:4.2 - Figure - A right-angled triangle with angle 35° and sides 11 and x}}
+
|width="50%" | {{:4.2 - Bild - Ein rechteckiges Dreieck mit dem Winkel 35° und den Seiten 11 und x}}
|f)
|f)
|width="50%" |
|width="50%" |

Version vom 10:01, 21. Okt. 2008

 

Vorlage:Not selected tab Vorlage:Selected tab

 

Exercise 4.2:1

Using the trigonometric functions, determine the length of the side marked\displaystyle \,x\,

a)

[Image]

b)

[Image]

c) 4.2 - Figure - A right-angled triangle with angle 40° and sides 14 and x d)

[Image]

e)

[Image]

f)

4.2 - Figure - A right-angled triangle with angle 50° and sides x and 19

Exercise 4.2:2

Exercise 4.2:3

Determine

a) \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)} b) \displaystyle \cos{2\pi} c) \displaystyle \sin{9\pi}
d) \displaystyle \cos{\displaystyle \frac{7\pi}{2}} e) \displaystyle \sin{\displaystyle \frac{3\pi}{4}} f) \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)}

Exercise 4.2:4

Determine

a) \displaystyle \cos{\displaystyle \frac{11\pi}{6}} b) \displaystyle \cos{\displaystyle \frac{11\pi}{3}} c) \displaystyle \tan{\displaystyle \frac{3\pi}{4}}
d) \displaystyle \tan{\pi} e) \displaystyle \tan{\displaystyle \frac{7\pi}{6}} f) \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)}

Exercise 4.2:5

Determine

a) \displaystyle \cos{135^\circ} b) \displaystyle \tan{225^\circ} c) \displaystyle \cos{330^\circ} d) \displaystyle \tan{495^\circ}

Exercise 4.2:6

Determine the length of the side marked \displaystyle \,x\,.

4.2 - Figure - Two triangles with angles 45° and 60°, respectively, and height difference x

Exercise 4.2:7

In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?

4.2 - Figure - A river

Exercise 4.2:8

A rod of length \displaystyle \,\ell\, hangs from two ropes of length \displaystyle \,a\, and \displaystyle \,b\, as shown in the figure. The ropes make angles \displaystyle \,\alpha\, and \displaystyle \,\beta\, with the vertical. Determine a trigonometric equation for the angle \displaystyle \,\gamma\, which the rod makes with the vertical.

4.2 - Figure - Hanging rod

Exercise 4.2:9

The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)

4.2 - Figure - A road from A to B via P and Q