Lösung 4.2:4f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | If we add  | + | If we add <math>2\pi</math> to <math>-5\pi/3\,</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle  as the old angle <math>-5\pi/3</math> and consequently has the same tangent value, | 
| - | <math>2\pi </math> | + | |
| - | to  | + | |
| - | <math>- | + | |
| - | <math>- | + | |
| - | and consequently has the same tangent value | + | |
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | \tan\Bigl(-\frac{5\pi}{3}\Bigr) | 
| - | + | = \tan\Bigl(-\frac{5\pi}{3}+2\pi\Bigr) | |
| - | + | = \tan\frac{\pi}{3}  | |
| - | \end{align}</math> | + | = \frac{\sin\dfrac{\pi}{3}}{\cos\dfrac{\pi}{3}} | 
| + | = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} | ||
| + | = \sqrt{3}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Version vom 10:52, 9. Okt. 2008
If we add \displaystyle 2\pi to \displaystyle -5\pi/3\,, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle \displaystyle -5\pi/3 and consequently has the same tangent value,
 
		  