Lösung 2.1:1g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| The expression in the exercise is of the form <math> (a-b)^2 </math>, where <math> a=y^2</math> and <math> b=3x^2 </math>. With the help of the squaring rule <math> (a-b)^2 =a^2 -2ab +b^2 </math>, we have | The expression in the exercise is of the form <math> (a-b)^2 </math>, where <math> a=y^2</math> and <math> b=3x^2 </math>. With the help of the squaring rule <math> (a-b)^2 =a^2 -2ab +b^2 </math>, we have | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| (y^2-3x^3)^2 &= (y^2)^2 -2\cdot y^2\cdot 3x^3 +(3x^3)^2 \\[3pt] | (y^2-3x^3)^2 &= (y^2)^2 -2\cdot y^2\cdot 3x^3 +(3x^3)^2 \\[3pt] | ||
| &= y^{2\cdot 2} -6x^3y^2 +3^2x^{3\cdot 2}\\[3pt] | &= y^{2\cdot 2} -6x^3y^2 +3^2x^{3\cdot 2}\\[3pt] | ||
Version vom 08:21, 22. Okt. 2008
The expression in the exercise is of the form \displaystyle (a-b)^2 , where \displaystyle a=y^2 and \displaystyle b=3x^2 . With the help of the squaring rule \displaystyle (a-b)^2 =a^2 -2ab +b^2 , we have
| \displaystyle \begin{align} (y^2-3x^3)^2 &= (y^2)^2 -2\cdot y^2\cdot 3x^3 +(3x^3)^2 \\[3pt] &= y^{2\cdot 2} -6x^3y^2 +3^2x^{3\cdot 2}\\[3pt] &= y^4 -6x^3y^2 +9x^6\\[3pt] &= 9x^6 -6x^3y^2 +y^4\,\textrm{.} \end{align} | 
 
		  