Lösung 4.3:8c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:8c moved to Solution 4.3:8c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
One could write
-
<center> [[Image:4_3_8c-1(2).gif]] </center>
+
<math>\tan \frac{u}{2}</math>
-
{{NAVCONTENT_STOP}}
+
as a quotient involving sine and cosine, and then continue with the formula for half-angles,
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_3_8c-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>\tan \frac{u}{2}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=...</math>
 +
 
 +
 
 +
but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.
 +
 
 +
We write
 +
<math>u</math>
 +
as
 +
<math>2\left( \frac{u}{2} \right)</math>
 +
and use the formula for double angles (so as to end up with a right-hand side which has
 +
<math>\frac{u}{2}</math>
 +
as its argument)
 +
 
 +
 
 +
<math>\frac{\sin u}{1+\cos u}=\frac{\sin \left( 2\centerdot \frac{u}{2} \right)}{1+\cos \left( 2\centerdot \frac{u}{2} \right)}=\frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}</math>
 +
 
 +
 
 +
Writing the
 +
<math>\text{1}</math>
 +
in the denominator as
 +
<math>\cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}</math>
 +
using the Pythagorean identity,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}=\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{\cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}} \\
 +
& =\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{2\cos ^{2}\frac{u}{2}}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=\tan \frac{u}{2} \\
 +
\end{align}</math>

Version vom 11:08, 30. Sep. 2008

One could write \displaystyle \tan \frac{u}{2} as a quotient involving sine and cosine, and then continue with the formula for half-angles,


\displaystyle \tan \frac{u}{2}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=...


but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.

We write \displaystyle u as \displaystyle 2\left( \frac{u}{2} \right) and use the formula for double angles (so as to end up with a right-hand side which has \displaystyle \frac{u}{2} as its argument)


\displaystyle \frac{\sin u}{1+\cos u}=\frac{\sin \left( 2\centerdot \frac{u}{2} \right)}{1+\cos \left( 2\centerdot \frac{u}{2} \right)}=\frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}


Writing the \displaystyle \text{1} in the denominator as \displaystyle \cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2} using the Pythagorean identity,


\displaystyle \begin{align} & \frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}=\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{\cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}} \\ & =\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{2\cos ^{2}\frac{u}{2}}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=\tan \frac{u}{2} \\ \end{align}