Lösung 4.3:7b
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.3:7b moved to Solution 4.3:7b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Using the addition formula, we rewrite |
- | < | + | <math>\text{sin}\left( x+y \right)</math> |
- | {{ | + | as |
+ | |||
+ | |||
+ | <math>\text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y</math> | ||
+ | |||
+ | |||
+ | If we use the same solution procedure as in exercise a, we use the Pythagorean identity | ||
+ | |||
+ | <math>\cos ^{2}v+\sin ^{2}v=1</math> | ||
+ | to express the unknown factors | ||
+ | <math>x\text{ }</math> | ||
+ | and | ||
+ | <math>y\text{ }</math> | ||
+ | in terms of | ||
+ | <math>\text{cos }x\text{ }</math> | ||
+ | and | ||
+ | <math>\text{cos }y</math>, | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & \sin x=\pm \sqrt{1-\text{cos}^{2}x}=\pm \sqrt{1-\left( \frac{2}{5} \right)^{2}}=\pm \sqrt{1-\frac{4}{25}}=\pm \frac{\sqrt{21}}{5}, \\ | ||
+ | & \sin y=\pm \sqrt{1-\text{cos}^{2}y}=\pm \sqrt{1-\left( \frac{3}{5} \right)^{2}}=\pm \sqrt{1-\frac{9}{25}}=\pm \frac{4}{5} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The angles | ||
+ | <math>x\text{ }</math> | ||
+ | and | ||
+ | <math>y\text{ }</math> | ||
+ | lie in the first quadrant and both | ||
+ | <math>\text{sin }x\text{ }</math> | ||
+ | and | ||
+ | <math>\text{sin }y\text{ }</math> | ||
+ | are therefore positive, i.e. | ||
+ | |||
+ | |||
+ | <math>\sin x=\frac{\sqrt{21}}{5}</math> | ||
+ | and | ||
+ | <math>\sin y=\frac{4}{5}</math> | ||
+ | |||
+ | |||
+ | Thus, the answer is | ||
+ | |||
+ | |||
+ | <math>\text{sin}\left( x+y \right)=\frac{\sqrt{21}}{5}\centerdot \frac{3}{5}+\frac{2}{5}\centerdot \frac{4}{5}=\frac{3\sqrt{21}+8}{25}</math> |
Version vom 10:29, 30. Sep. 2008
Using the addition formula, we rewrite \displaystyle \text{sin}\left( x+y \right) as
\displaystyle \text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y
If we use the same solution procedure as in exercise a, we use the Pythagorean identity
\displaystyle \cos ^{2}v+\sin ^{2}v=1 to express the unknown factors \displaystyle x\text{ } and \displaystyle y\text{ } in terms of \displaystyle \text{cos }x\text{ } and \displaystyle \text{cos }y,
\displaystyle \begin{align} & \sin x=\pm \sqrt{1-\text{cos}^{2}x}=\pm \sqrt{1-\left( \frac{2}{5} \right)^{2}}=\pm \sqrt{1-\frac{4}{25}}=\pm \frac{\sqrt{21}}{5}, \\ & \sin y=\pm \sqrt{1-\text{cos}^{2}y}=\pm \sqrt{1-\left( \frac{3}{5} \right)^{2}}=\pm \sqrt{1-\frac{9}{25}}=\pm \frac{4}{5} \\ \end{align}
The angles
\displaystyle x\text{ }
and
\displaystyle y\text{ }
lie in the first quadrant and both
\displaystyle \text{sin }x\text{ }
and
\displaystyle \text{sin }y\text{ }
are therefore positive, i.e.
\displaystyle \sin x=\frac{\sqrt{21}}{5}
and
\displaystyle \sin y=\frac{4}{5}
Thus, the answer is
\displaystyle \text{sin}\left( x+y \right)=\frac{\sqrt{21}}{5}\centerdot \frac{3}{5}+\frac{2}{5}\centerdot \frac{4}{5}=\frac{3\sqrt{21}+8}{25}