Lösung 2.3:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:4b moved to Solution 2.3:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
A first-degree equation which
-
<center> [[Image:2_3_4b-1(2).gif]] </center>
+
<math>x=\text{ 1}+\sqrt{\text{3}}</math>
-
{{NAVCONTENT_STOP}}
+
as a root is
-
{{NAVCONTENT_START}}
+
<math>x-\left( \text{1}+\sqrt{\text{3}} \right)=0</math>, which we can also write as
-
<center> [[Image:2_3_4b-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>x-\text{1-}\sqrt{\text{3}}=0</math>. In the same way, we have that
 +
<math>x-\left( \text{1-}\sqrt{\text{3}} \right)=0</math>, i.e.,
 +
<math>x-\text{1+}\sqrt{\text{3}}=0</math>
 +
is a first-degree equation that has
 +
<math>x=\text{ 1-}\sqrt{\text{3}}</math>
 +
as a root. If we multiply these two first-degree equations together, we get a second-degree equation with
 +
<math>x=\text{ 1}+\sqrt{\text{3}}</math>
 +
and
 +
<math>x=\text{ 1-}\sqrt{\text{3}}</math>. as roots:
 +
 
 +
 
 +
<math>\left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0</math>
 +
 
 +
 
 +
The first factor become zero when
 +
<math>x=\text{ 1}+\sqrt{\text{3}}</math>
 +
and the second factor becomes zero when
 +
<math>x=\text{ 1-}\sqrt{\text{3}}</math>.
 +
 
 +
Nothing really prevents us from answering with
 +
<math>\left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0</math>, but if we want to give the equation in standard form, we need to expand the left-hand side,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=x^{2}-x+\sqrt{3}-x+1-\sqrt{3}-\sqrt{3}x+\sqrt{3}-\left( \sqrt{3} \right)^{2} \\
 +
& =x^{2}+\left( -x+\sqrt{3}x-x-\sqrt{3}x \right)+\left( 1-\sqrt{3}+\sqrt{3}-3 \right) \\
 +
& =x^{2}-2x-2 \\
 +
\end{align}</math>
 +
 
 +
 
 +
to get the equation
 +
<math>x^{2}-2x-2=0</math>
 +
 
 +
 
 +
NOTE: Exactly as in exercise
 +
<math>\text{a}</math>, we can multiply the equation by a non-zero constant
 +
<math>a</math>,
 +
 
 +
 
 +
<math>ax^{2}-2ax-2a=0</math>
 +
 
 +
 
 +
and still have a second-degree equation with the same roots.

Version vom 09:29, 21. Sep. 2008

A first-degree equation which \displaystyle x=\text{ 1}+\sqrt{\text{3}} as a root is \displaystyle x-\left( \text{1}+\sqrt{\text{3}} \right)=0, which we can also write as

\displaystyle x-\text{1-}\sqrt{\text{3}}=0. In the same way, we have that \displaystyle x-\left( \text{1-}\sqrt{\text{3}} \right)=0, i.e., \displaystyle x-\text{1+}\sqrt{\text{3}}=0 is a first-degree equation that has \displaystyle x=\text{ 1-}\sqrt{\text{3}} as a root. If we multiply these two first-degree equations together, we get a second-degree equation with \displaystyle x=\text{ 1}+\sqrt{\text{3}} and \displaystyle x=\text{ 1-}\sqrt{\text{3}}. as roots:


\displaystyle \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0


The first factor become zero when \displaystyle x=\text{ 1}+\sqrt{\text{3}} and the second factor becomes zero when \displaystyle x=\text{ 1-}\sqrt{\text{3}}.

Nothing really prevents us from answering with \displaystyle \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0, but if we want to give the equation in standard form, we need to expand the left-hand side,


\displaystyle \begin{align} & \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=x^{2}-x+\sqrt{3}-x+1-\sqrt{3}-\sqrt{3}x+\sqrt{3}-\left( \sqrt{3} \right)^{2} \\ & =x^{2}+\left( -x+\sqrt{3}x-x-\sqrt{3}x \right)+\left( 1-\sqrt{3}+\sqrt{3}-3 \right) \\ & =x^{2}-2x-2 \\ \end{align}


to get the equation \displaystyle x^{2}-2x-2=0


NOTE: Exactly as in exercise \displaystyle \text{a}, we can multiply the equation by a non-zero constant \displaystyle a,


\displaystyle ax^{2}-2ax-2a=0


and still have a second-degree equation with the same roots.