Lösung 2.3:4b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:4b moved to Solution 2.3:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | A first-degree equation which |
- | < | + | <math>x=\text{ 1}+\sqrt{\text{3}}</math> |
- | {{ | + | as a root is |
- | {{ | + | <math>x-\left( \text{1}+\sqrt{\text{3}} \right)=0</math>, which we can also write as |
- | < | + | |
- | {{ | + | <math>x-\text{1-}\sqrt{\text{3}}=0</math>. In the same way, we have that |
+ | <math>x-\left( \text{1-}\sqrt{\text{3}} \right)=0</math>, i.e., | ||
+ | <math>x-\text{1+}\sqrt{\text{3}}=0</math> | ||
+ | is a first-degree equation that has | ||
+ | <math>x=\text{ 1-}\sqrt{\text{3}}</math> | ||
+ | as a root. If we multiply these two first-degree equations together, we get a second-degree equation with | ||
+ | <math>x=\text{ 1}+\sqrt{\text{3}}</math> | ||
+ | and | ||
+ | <math>x=\text{ 1-}\sqrt{\text{3}}</math>. as roots: | ||
+ | |||
+ | |||
+ | <math>\left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0</math> | ||
+ | |||
+ | |||
+ | The first factor become zero when | ||
+ | <math>x=\text{ 1}+\sqrt{\text{3}}</math> | ||
+ | and the second factor becomes zero when | ||
+ | <math>x=\text{ 1-}\sqrt{\text{3}}</math>. | ||
+ | |||
+ | Nothing really prevents us from answering with | ||
+ | <math>\left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0</math>, but if we want to give the equation in standard form, we need to expand the left-hand side, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=x^{2}-x+\sqrt{3}-x+1-\sqrt{3}-\sqrt{3}x+\sqrt{3}-\left( \sqrt{3} \right)^{2} \\ | ||
+ | & =x^{2}+\left( -x+\sqrt{3}x-x-\sqrt{3}x \right)+\left( 1-\sqrt{3}+\sqrt{3}-3 \right) \\ | ||
+ | & =x^{2}-2x-2 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | to get the equation | ||
+ | <math>x^{2}-2x-2=0</math> | ||
+ | |||
+ | |||
+ | NOTE: Exactly as in exercise | ||
+ | <math>\text{a}</math>, we can multiply the equation by a non-zero constant | ||
+ | <math>a</math>, | ||
+ | |||
+ | |||
+ | <math>ax^{2}-2ax-2a=0</math> | ||
+ | |||
+ | |||
+ | and still have a second-degree equation with the same roots. |
Version vom 09:29, 21. Sep. 2008
A first-degree equation which \displaystyle x=\text{ 1}+\sqrt{\text{3}} as a root is \displaystyle x-\left( \text{1}+\sqrt{\text{3}} \right)=0, which we can also write as
\displaystyle x-\text{1-}\sqrt{\text{3}}=0. In the same way, we have that \displaystyle x-\left( \text{1-}\sqrt{\text{3}} \right)=0, i.e., \displaystyle x-\text{1+}\sqrt{\text{3}}=0 is a first-degree equation that has \displaystyle x=\text{ 1-}\sqrt{\text{3}} as a root. If we multiply these two first-degree equations together, we get a second-degree equation with \displaystyle x=\text{ 1}+\sqrt{\text{3}} and \displaystyle x=\text{ 1-}\sqrt{\text{3}}. as roots:
\displaystyle \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0
The first factor become zero when
\displaystyle x=\text{ 1}+\sqrt{\text{3}}
and the second factor becomes zero when
\displaystyle x=\text{ 1-}\sqrt{\text{3}}.
Nothing really prevents us from answering with \displaystyle \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=0, but if we want to give the equation in standard form, we need to expand the left-hand side,
\displaystyle \begin{align}
& \left( x-\text{1-}\sqrt{\text{3}} \right)\left( x-\text{1+}\sqrt{\text{3}} \right)=x^{2}-x+\sqrt{3}-x+1-\sqrt{3}-\sqrt{3}x+\sqrt{3}-\left( \sqrt{3} \right)^{2} \\
& =x^{2}+\left( -x+\sqrt{3}x-x-\sqrt{3}x \right)+\left( 1-\sqrt{3}+\sqrt{3}-3 \right) \\
& =x^{2}-2x-2 \\
\end{align}
to get the equation
\displaystyle x^{2}-2x-2=0
NOTE: Exactly as in exercise
\displaystyle \text{a}, we can multiply the equation by a non-zero constant
\displaystyle a,
\displaystyle ax^{2}-2ax-2a=0
and still have a second-degree equation with the same roots.