3.1 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Svar +Answer))
K (Robot: Automated text replacement (-Lösning +Solution))
Zeile 21: Zeile 21:
|width="25%" | <math>\sqrt{\sqrt{3}}</math>
|width="25%" | <math>\sqrt{\sqrt{3}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:1|Solution a|Lösning 3.1:1a|Solution b|Lösning 3.1:1b|Solution c|Lösning 3.1:1c|Solution d|Lösning 3.1:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:1|Solution a|Solution 3.1:1a|Solution b|Solution 3.1:1b|Solution c|Solution 3.1:1c|Solution d|Solution 3.1:1d}}
===Exercise 3.1:2===
===Exercise 3.1:2===
Zeile 43: Zeile 43:
|width="25%" | <math>\sqrt[\scriptstyle3]{-125}</math>
|width="25%" | <math>\sqrt[\scriptstyle3]{-125}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:2|Solution a|Lösning 3.1:2a|Solution b|Lösning 3.1:2b|Solution c|Lösning 3.1:2c|Solution d|Lösning 3.1:2d|Solution e|Lösning 3.1:2e|Solution f|Lösning 3.1:2f|Solution g|Lösning 3.1:2g}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:2|Solution a|Solution 3.1:2a|Solution b|Solution 3.1:2b|Solution c|Solution 3.1:2c|Solution d|Solution 3.1:2d|Solution e|Solution 3.1:2e|Solution f|Solution 3.1:2f|Solution g|Solution 3.1:2g}}
===Exercise 3.1:3===
===Exercise 3.1:3===
Zeile 59: Zeile 59:
|width="50%" | <math>\sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr)</math>
|width="50%" | <math>\sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr)</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:3|Solution a|Lösning 3.1:3a|Solution b|Lösning 3.1:3b|Solution c|Lösning 3.1:3c|Solution d|Lösning 3.1:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:3|Solution a|Solution 3.1:3a|Solution b|Solution 3.1:3b|Solution c|Solution 3.1:3c|Solution d|Solution 3.1:3d}}
===Exercise 3.1:4===
===Exercise 3.1:4===
Zeile 75: Zeile 75:
|width="50%" | <math>\sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75}</math>
|width="50%" | <math>\sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:4|Solution a|Lösning 3.1:4a|Solution b|Lösning 3.1:4b|Solution c|Lösning 3.1:4c|Solution d|Lösning 3.1:4d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:4|Solution a|Solution 3.1:4a|Solution b|Solution 3.1:4b|Solution c|Solution 3.1:4c|Solution d|Solution 3.1:4d}}
===Exercise 3.1:5===
===Exercise 3.1:5===
Zeile 90: Zeile 90:
|width="25%" | <math>\displaystyle \frac{1}{\sqrt{17}-\sqrt{13}}</math>
|width="25%" | <math>\displaystyle \frac{1}{\sqrt{17}-\sqrt{13}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:5|Solution a|Lösning 3.1:5a|Solution b|Lösning 3.1:5b|Solution c|Lösning 3.1:5c|Solution d|Lösning 3.1:5d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:5|Solution a|Solution 3.1:5a|Solution b|Solution 3.1:5b|Solution c|Solution 3.1:5c|Solution d|Solution 3.1:5d}}
===Exercise 3.1:6===
===Exercise 3.1:6===
Zeile 106: Zeile 106:
|width="50%" | <math>\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}}</math>
|width="50%" | <math>\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:6|Solution a|Lösning 3.1:6a|Solution b|Lösning 3.1:6b|Solution c|Lösning 3.1:6c|Solution d|Lösning 3.1:6d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:6|Solution a|Solution 3.1:6a|Solution b|Solution 3.1:6b|Solution c|Solution 3.1:6c|Solution d|Solution 3.1:6d}}
===Exercise 3.1:7===
===Exercise 3.1:7===
Zeile 119: Zeile 119:
|width="33%" | <math>\displaystyle \sqrt{153}-\sqrt{68}</math>
|width="33%" | <math>\displaystyle \sqrt{153}-\sqrt{68}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:7|Solution a|Lösning 3.1:7a|Solution b|Lösning 3.1:7b|Solution c|Lösning 3.1:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:7|Solution a|Solution 3.1:7a|Solution b|Solution 3.1:7b|Solution c|Solution 3.1:7c}}
===Exercise 3.1:8===
===Exercise 3.1:8===
Zeile 135: Zeile 135:
|width="50%" | <math>\sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\</math> or <math>\ \sqrt[\scriptstyle3]2\cdot3</math>
|width="50%" | <math>\sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\</math> or <math>\ \sqrt[\scriptstyle3]2\cdot3</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.1:8|Solution a|Lösning 3.1:8a|Solution b|Lösning 3.1:8b|Solution c|Lösning 3.1:8c|Solution d|Lösning 3.1:8d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.1:8|Solution a|Solution 3.1:8a|Solution b|Solution 3.1:8b|Solution c|Solution 3.1:8c|Solution d|Solution 3.1:8d}}

Version vom 11:21, 9. Sep. 2008

 

Vorlage:Ej vald flik Vorlage:Vald flik

 


Exercise 3.1:1

Write in power form

a) \displaystyle \sqrt{2} b) \displaystyle \sqrt{7^5} c) \displaystyle \bigl(\sqrt[\scriptstyle3]{3}\,\bigr)^4 d) \displaystyle \sqrt{\sqrt{3}}

Exercise 3.1:2

Write in simplest possible form.

a) \displaystyle \sqrt{3^2} b) \displaystyle \sqrt{\left(-3\right)^2} c) \displaystyle \sqrt{-3^2} d) \displaystyle \sqrt{5}\cdot\sqrt[\scriptstyle3]{5}\cdot5
e) \displaystyle \sqrt{18}\cdot\sqrt{8} f) \displaystyle \sqrt[\scriptstyle3]{8} g) \displaystyle \sqrt[\scriptstyle3]{-125}

Exercise 3.1:3

Write in simplest possible form.

a) \displaystyle \bigl(\sqrt{5}-\sqrt{2}\,\bigr)\bigl(\sqrt{5}+\sqrt{2}\,\bigr) b) \displaystyle \displaystyle \frac{\sqrt{96}}{\sqrt{18}}
c) \displaystyle \sqrt{16+\sqrt{16}} d) \displaystyle \sqrt{\displaystyle \frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\,\bigr)

Exercise 3.1:4

Write in simplest possible form.

a) \displaystyle \sqrt{0{,}16} b) \displaystyle \sqrt[\scriptstyle3]{0{,}027}
c) \displaystyle \sqrt{50}+4\sqrt{20}-3\sqrt{18}-2\sqrt{80} d) \displaystyle \sqrt{48}+ \sqrt{12} +\sqrt{3} -\sqrt{75}

Exercise 3.1:5

Write as an expression without a root sign in the denominator.

a) \displaystyle \displaystyle \frac{2}{\sqrt{12}} b) \displaystyle \displaystyle \frac{1}{\sqrt[\scriptstyle3]{7}} c) \displaystyle \displaystyle \frac{2}{3+\sqrt{7}} d) \displaystyle \displaystyle \frac{1}{\sqrt{17}-\sqrt{13}}

Exercise 3.1:6

Write as an expression without a root sign in the denominator.

a) \displaystyle \displaystyle \frac{\sqrt{2}+3}{\sqrt{5}-2} b) \displaystyle \displaystyle \frac{1}{\left(\sqrt{3}-2\right)^2-2}
c) \displaystyle \displaystyle \frac{\displaystyle \frac{1}{\sqrt{3}}-\displaystyle \frac{1}{\sqrt{5}}}{\displaystyle \frac{1}{\sqrt{2}}-\displaystyle \frac{1}{2}} d) \displaystyle \displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{6}}

Exercise 3.1:7

Write in simplest possible form.

a) \displaystyle \displaystyle \frac{1}{\sqrt{6}-\sqrt{5}} - \displaystyle \frac{1}{\sqrt{7}-\sqrt{6}} b) \displaystyle \displaystyle \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} c) \displaystyle \displaystyle \sqrt{153}-\sqrt{68}

Exercise 3.1:8

Determine which number is the larger:

a) \displaystyle \sqrt[\scriptstyle3]5\ or \displaystyle \ \sqrt[\scriptstyle3]6 b) \displaystyle \sqrt7\ or \displaystyle \ 7
c) \displaystyle \sqrt7\ or \displaystyle \ 2{.}5 d) \displaystyle \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ or \displaystyle \ \sqrt[\scriptstyle3]2\cdot3