Lösung 4.1:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:43, 16. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
If we use the distance formula
+
Wir benutzen direkt die Formel für den Abstand zwischen zwei Punkten:
 +
{{Abgesetzte Formel||<math>d=\sqrt{(x-a)^2+(y-b)^2}\,.</math>}}
-
<math>d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}</math>
+
Mit <math>(x,y) = (-2,5)</math> und <math>(a,b) = (3,-1)</math>, erhalten wir
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
to determine the distance between the points
+
d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt]
-
<math>\left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right)</math>
+
&= \sqrt{(-5)^2+6^2}\\[5pt]
-
and
+
&= \sqrt{25+36}\\[5pt]
-
<math>\left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right)</math>, we get
+
&= \sqrt{61}\,\textrm{.}
-
 
+
\end{align}</math>}}
-
 
+
-
<math>\begin{align}
+
-
& d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\
+
-
& =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\
+
-
\end{align}</math>
+

Aktuelle Version

Wir benutzen direkt die Formel für den Abstand zwischen zwei Punkten:

\displaystyle d=\sqrt{(x-a)^2+(y-b)^2}\,.

Mit \displaystyle (x,y) = (-2,5) und \displaystyle (a,b) = (3,-1), erhalten wir

\displaystyle \begin{align}

d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt] &= \sqrt{(-5)^2+6^2}\\[5pt] &= \sqrt{25+36}\\[5pt] &= \sqrt{61}\,\textrm{.} \end{align}