Lösung 4.1:1
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir müssen uns eigentlich nur daran erinnern, dass ein Vollwinkel 360° oder <math>2\pi</math> rad entspricht. So erhalten wir: | |
- | <math> | + | |
- | + | ||
- | + | ||
- | + | ||
- | a) | + | {| |
- | <math>\frac{1}{4} | + | ||a) |
- | + | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> und | |
- | + | |- | |
- | + | || | |
- | + | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,}</math> | |
- | <math>\frac{1}{4} | + | |- |
- | + | |height="10px"| | |
- | + | |- | |
- | + | ||b) | |
- | + | |width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> und | |
- | + | |- | |
- | + | || | |
- | + | ||<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,}</math> | |
- | b) | + | |- |
- | <math>\frac{3}{8} | + | |height="10px"| |
- | + | |- | |
- | + | ||c) | |
- | + | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> und | |
- | + | |- | |
- | <math>\frac{3}{8} | + | || |
- | + | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,}</math> | |
- | + | |- | |
- | + | |height="10px"| | |
- | + | |- | |
- | + | ||d) | |
- | + | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> und | |
- | + | |- | |
- | + | || | |
- | c) | + | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math> |
- | <math>-\frac{2}{3} | + | |} |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>-\frac{2}{3} | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | d) | + | |
- | <math>\frac{97}{12} | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\frac{97}{12} | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Aktuelle Version
Wir müssen uns eigentlich nur daran erinnern, dass ein Vollwinkel 360° oder \displaystyle 2\pi rad entspricht. So erhalten wir:
a) | \displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} und |
\displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,} | |
b) | \displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} und |
\displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,} | |
c) | \displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} und |
\displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,} | |
d) | \displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} und |
\displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.} |