Lösung 4.1:1

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:38, 16. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The only thing we really need to remember is that one turn corresponds to
+
Wir müssen uns eigentlich nur daran erinnern, dass ein Vollwinkel 360° oder <math>2\pi</math> rad entspricht. So erhalten wir:
-
<math>\text{36}0^{\text{o}}</math>
+
-
or
+
-
<math>\text{2}\pi </math>
+
-
radians. Then we get:
+
-
a)
+
{|
-
<math>\frac{1}{4}</math>
+
||a)&nbsp;&nbsp;
-
turn
+
|width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> und
-
<math>=\frac{1}{4}\centerdot 360^{\circ }=90^{\circ }</math>
+
|-
-
and
+
||
-
+
|width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,}</math>
-
<math>\frac{1}{4}</math>
+
|-
-
turn
+
|height="10px"|&nbsp;
-
<math>=\frac{1}{4}\centerdot 2\pi </math>
+
|-
-
radians
+
||b)&nbsp;&nbsp;
-
<math>=\frac{\pi }{2}</math>
+
|width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> und
-
radians,
+
|-
-
+
||
-
 
+
||<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,}</math>
-
b)
+
|-
-
<math>\frac{3}{8}</math>
+
|height="10px"|&nbsp;
-
turn
+
|-
-
<math>=\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }</math>
+
||c)&nbsp;&nbsp;
-
and
+
|width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> und
-
+
|-
-
<math>\frac{3}{8}</math>
+
||
-
turn
+
|width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,}</math>
-
<math>=\frac{3}{8}\centerdot 2\pi </math>
+
|-
-
radians
+
|height="10px"|&nbsp;
-
<math>=\frac{3\pi }{4}</math>
+
|-
-
radians,
+
||d)&nbsp;&nbsp;
-
 
+
|width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> und
-
+
|-
-
 
+
||
-
c)
+
|width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math>
-
<math>-\frac{2}{3}</math>
+
|}
-
turn
+
-
<math>=-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ }</math>
+
-
and
+
-
+
-
<math>-\frac{2}{3}</math>
+
-
turn
+
-
<math>=-\frac{2}{3}\centerdot 2\pi </math>
+
-
radians
+
-
<math>=-\frac{4\pi }{3}</math>
+
-
radians,
+
-
 
+
-
 
+
-
d)
+
-
<math>\frac{97}{12}</math>
+
-
turn
+
-
<math>=\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }</math>
+
-
and
+
-
+
-
<math>\frac{97}{12}</math>
+
-
turn
+
-
<math>=\frac{97}{12}\centerdot 2\pi </math>
+
-
radians
+
-
<math>=\frac{97\pi }{6}</math>
+
-
radians,
+

Aktuelle Version

Wir müssen uns eigentlich nur daran erinnern, dass ein Vollwinkel 360° oder \displaystyle 2\pi rad entspricht. So erhalten wir:

a)   \displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} und
\displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,}
 
b)   \displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} und
\displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,}
 
c)   \displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} und
\displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,}
 
d)   \displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} und
\displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}