Lösung 2.1:5d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Wir zerlegen zuerst jeweils Zähler und Nenner in ihre Faktoren
+
Wir zerlegen zuerst jeweils Zähler und Nenner in ihre Faktoren.
Der Faktor <math>y^{2}+4y+4</math> kann wie <math>y^{2}+2\cdot 2y+2^{2}</math> geschrieben werden, wobei wir die binomische Formel verwenden können
Der Faktor <math>y^{2}+4y+4</math> kann wie <math>y^{2}+2\cdot 2y+2^{2}</math> geschrieben werden, wobei wir die binomische Formel verwenden können
Zeile 5: Zeile 5:
{{Abgesetzte Formel||<math>y^{2}+4y+4 = y^{2}+2\cdot 2y+2^{2} = (y+2)^{2}\textrm{.}</math>}}
{{Abgesetzte Formel||<math>y^{2}+4y+4 = y^{2}+2\cdot 2y+2^{2} = (y+2)^{2}\textrm{.}</math>}}
-
Der faktor <math>2y-4</math> kann nicht weiter zerlegt werden, mit Ausnahme von den Faktor <math>2</math>, nachdem <math>2y-4=2\left( y-2 \right)\,</math>.
+
Der Faktor <math>2y-4</math> kann nicht weiter zerlegt werden, mit Ausnahme von <math>2</math>, da <math>2y-4=2\left( y-2 \right)\,</math>.
-
<math>y^{2}-4</math> kann mit der binomischen Formel zerlege werden:
+
<math>y^{2}-4</math> kann mit der binomischen Formel zerlegt werden:
{{Abgesetzte Formel||<math>y^{2}-4 = (y+2)(y-2)\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>y^{2}-4 = (y+2)(y-2)\,\textrm{.}</math>}}
-
<math>y^{2}+4</math> hingegen kann nicht weiter zerlegt werden. Wäre die möglich, würde das bedeuten dass <math>y^{2}+4 = (y-a)(y-b)</math>, für irgendwelche zahlen ''a'' und ''b'', wo <math>y=a</math> und
+
<math>y^{2}+4</math> hingegen kann nicht weiter zerlegt werden. Wäre dies möglich, würde das bedeuten dass <math>y^{2}+4 = (y-a)(y-b)</math>, für irgendwelche Zahlen ''a'' und ''b'', wobei <math>y=a</math> und
<math>y=b</math> die Wurzeln von <math>y^{2}+4</math> sind. Nachdem
<math>y=b</math> die Wurzeln von <math>y^{2}+4</math> sind. Nachdem
<math>y^{2}+4</math> aber eine Summe von Quadraten ist, und daher positiv ist, ist <math>y^{2}+4</math> immer gleich oder grösser als <math>4</math>, unabhängig von <math>y</math>. Daher kann <math>y^{2}+4</math> nicht weiter in Faktoren zerlegt werden.
<math>y^{2}+4</math> aber eine Summe von Quadraten ist, und daher positiv ist, ist <math>y^{2}+4</math> immer gleich oder grösser als <math>4</math>, unabhängig von <math>y</math>. Daher kann <math>y^{2}+4</math> nicht weiter in Faktoren zerlegt werden.

Version vom 08:19, 9. Jun. 2009

Wir zerlegen zuerst jeweils Zähler und Nenner in ihre Faktoren.

Der Faktor \displaystyle y^{2}+4y+4 kann wie \displaystyle y^{2}+2\cdot 2y+2^{2} geschrieben werden, wobei wir die binomische Formel verwenden können

\displaystyle y^{2}+4y+4 = y^{2}+2\cdot 2y+2^{2} = (y+2)^{2}\textrm{.}

Der Faktor \displaystyle 2y-4 kann nicht weiter zerlegt werden, mit Ausnahme von \displaystyle 2, da \displaystyle 2y-4=2\left( y-2 \right)\,.


\displaystyle y^{2}-4 kann mit der binomischen Formel zerlegt werden:

\displaystyle y^{2}-4 = (y+2)(y-2)\,\textrm{.}

\displaystyle y^{2}+4 hingegen kann nicht weiter zerlegt werden. Wäre dies möglich, würde das bedeuten dass \displaystyle y^{2}+4 = (y-a)(y-b), für irgendwelche Zahlen a und b, wobei \displaystyle y=a und \displaystyle y=b die Wurzeln von \displaystyle y^{2}+4 sind. Nachdem \displaystyle y^{2}+4 aber eine Summe von Quadraten ist, und daher positiv ist, ist \displaystyle y^{2}+4 immer gleich oder grösser als \displaystyle 4, unabhängig von \displaystyle y. Daher kann \displaystyle y^{2}+4 nicht weiter in Faktoren zerlegt werden.

Daher ist

\displaystyle \frac{(y^{2}+4y+4)(2y-4)}{(y^{2}+4)(y^{2}-4)} = \frac{(y+2)^{2}\cdot 2(y-2)}{(y^{2}+4)(y+2)(y-2)} = \frac{2(y+2)}{(y^{2}+4)}\,\textrm{.}