Lösung 4.1:1
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| Zeile 3: | Zeile 3: | ||
| {| | {| | ||
| ||a)   | ||a)   | ||
| - | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math>  | + | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> und | 
| |- | |- | ||
| || | || | ||
| Zeile 11: | Zeile 11: | ||
| |- | |- | ||
| ||b)   | ||b)   | ||
| - | |width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math>  | + | |width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> und | 
| |- | |- | ||
| || | || | ||
| Zeile 19: | Zeile 19: | ||
| |- | |- | ||
| ||c)   | ||c)   | ||
| - | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math>  | + | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> und | 
| |- | |- | ||
| || | || | ||
| Zeile 27: | Zeile 27: | ||
| |- | |- | ||
| ||d)   	 | ||d)   	 | ||
| - | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math>  | + | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> und | 
| |- | |- | ||
| || | || | ||
| |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math> | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math> | ||
| |} | |} | ||
Version vom 16:10, 2. Apr. 2009
Wir müssen uns eigentlich nur daran erinnern dass ein Vollwinkel 360° oder \displaystyle 2\pi rad entspricht. So erhalten wir:
| a) | \displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} und | 
| \displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,} | |
| b) | \displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} und | 
| \displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,} | |
| c) | \displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} und | 
| \displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,} | |
| d) | \displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} und | 
| \displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.} | 
 
		  