Lösung 4.1:1
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
Zeile 3: | Zeile 3: | ||
{| | {| | ||
||a) | ||a) | ||
- | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> | + | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> und |
|- | |- | ||
|| | || | ||
Zeile 11: | Zeile 11: | ||
|- | |- | ||
||b) | ||b) | ||
- | |width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> | + | |width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> und |
|- | |- | ||
|| | || | ||
Zeile 19: | Zeile 19: | ||
|- | |- | ||
||c) | ||c) | ||
- | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> | + | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> und |
|- | |- | ||
|| | || | ||
Zeile 27: | Zeile 27: | ||
|- | |- | ||
||d) | ||d) | ||
- | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> | + | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> und |
|- | |- | ||
|| | || | ||
|width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math> | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math> | ||
|} | |} |
Version vom 16:10, 2. Apr. 2009
Wir müssen uns eigentlich nur daran erinnern dass ein Vollwinkel 360° oder \displaystyle 2\pi rad entspricht. So erhalten wir:
a) | \displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} und |
\displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,} | |
b) | \displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} und |
\displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,} | |
c) | \displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} und |
\displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,} | |
d) | \displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} und |
\displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.} |