Lösung 4.1:1
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „Solution 4.1:1“ nach „Lösung 4.1:1“ verschoben: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Wir müssen uns eigentlich nur daran erinnern dass ein Vollwinkel 360° oder <math>2\pi</math> rad entspricht. So erhalten wir: | |
- | 360° | + | |
{| | {| | ||
||a) | ||a) | ||
- | |width="100%"|<math>\frac{1}{4}\ \text{ | + | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> and |
|- | |- | ||
|| | || | ||
- | |width="100%"|<math>\frac{1}{4}\ \text{ | + | |width="100%"|<math>\frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,}</math> |
|- | |- | ||
|height="10px"| | |height="10px"| | ||
|- | |- | ||
||b) | ||b) | ||
- | |width="100%"|<math>\frac{3}{8}\ \text{ | + | |width="100%"|<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> and |
|- | |- | ||
|| | || | ||
- | ||<math>\frac{3}{8}\ \text{ | + | ||<math>\frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,}</math> |
|- | |- | ||
|height="10px"| | |height="10px"| | ||
|- | |- | ||
||c) | ||c) | ||
- | |width="100%"|<math>-\frac{2}{3}\ \text{ | + | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> and |
|- | |- | ||
|| | || | ||
- | |width="100%"|<math>-\frac{2}{3}\ \text{ | + | |width="100%"|<math>-\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,}</math> |
|- | |- | ||
|height="10px"| | |height="10px"| | ||
|- | |- | ||
||d) | ||d) | ||
- | |width="100%"|<math>\frac{97}{12}\ \text{ | + | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> and |
|- | |- | ||
|| | || | ||
- | |width="100%"|<math>\frac{97}{12}\ \text{ | + | |width="100%"|<math>\frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.}</math> |
|} | |} |
Version vom 16:06, 2. Apr. 2009
Wir müssen uns eigentlich nur daran erinnern dass ein Vollwinkel 360° oder \displaystyle 2\pi rad entspricht. So erhalten wir:
a) | \displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} and |
\displaystyle \frac{1}{4}\ \text{Vollwinkel} = \frac{1}{4}\cdot 2\pi\ \text{rad} = \frac{\pi}{2}\ \text{rad,} | |
b) | \displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} and |
\displaystyle \frac{3}{8}\ \text{Vollwinkel} = \frac{3}{8}\cdot 2\pi\ \text{rad} = \frac{3\pi}{4}\ \text{rad,} | |
c) | \displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} and |
\displaystyle -\frac{2}{3}\ \text{Vollwinkel} = -\frac{2}{3}\cdot 2\pi\ \text{rad} = -\frac{4\pi}{3}\ \text{rad,} | |
d) | \displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} and |
\displaystyle \frac{97}{12}\ \text{Vollwinkel} = \frac{97}{12}\cdot 2\pi\ \text{rad} = \frac{97\pi}{6}\ \text{rad.} |