Lösung 3.1:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (hat „Solution 3.1:3a“ nach „Lösung 3.1:3a“ verschoben: Robot: moved page)
Zeile 11: Zeile 11:
{{Abgesetzte Formel||<math>\sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.}</math>}}
 +
Mit der binomischen Formel <math>(a-b)(a+b) = a^{2} - b^{2}</math>, schreiben wir den Ausdruck wie:
-
Note: The expansion of <math>\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr)</math> can also be done directly with the formula for difference of two squares <math>(a-b)(a+b) = a^{2} - b^{2}</math> using <math>a=\sqrt{5}</math> and <math>b=\sqrt{2}</math>.
+
<math>\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) = {\sqrt{5}}^2 -{\sqrt{2}}^2 = 5 -2 = 3</math>

Version vom 20:29, 23. Mär. 2009

First expand the expression

\displaystyle \begin{align}

\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) &= \sqrt{5}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\\[5pt] &= \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\,\textrm{.} \end{align}

Because \displaystyle \sqrt{5} and \displaystyle \sqrt{2} are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that

\displaystyle \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.}

Mit der binomischen Formel \displaystyle (a-b)(a+b) = a^{2} - b^{2}, schreiben wir den Ausdruck wie:

\displaystyle \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) = {\sqrt{5}}^2 -{\sqrt{2}}^2 = 5 -2 = 3