Lösung 1.3:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_3_1b.gif </center> {{NAVCONTENT_STOP}}) |
|||
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | { | + | Wir schreiben 9 als eine Potenz mit der Basis 3, sodass wir die Rechenregeln für Potenzen verwenden können. |
- | < | + | |
- | {{ | + | Nachdem <math>9=3\cdot 3=3^{2}</math>, haben wir |
+ | |||
+ | {{Abgesetzte Formel||<math>9^{-2}=\bigl( 3^{2} \bigr)^{-2}=3^{2\cdot (-2)}=3^{-4}</math>}} | ||
+ | |||
+ | und daher ist | ||
+ | |||
+ | {{Abgesetzte Formel||<math>3^{5}\cdot 9^{-2}=3^{5}\cdot 3^{-4}=3^{5-4}=3^1=3\,</math>.}} |
Aktuelle Version
Wir schreiben 9 als eine Potenz mit der Basis 3, sodass wir die Rechenregeln für Potenzen verwenden können.
Nachdem \displaystyle 9=3\cdot 3=3^{2}, haben wir
\displaystyle 9^{-2}=\bigl( 3^{2} \bigr)^{-2}=3^{2\cdot (-2)}=3^{-4} |
und daher ist
\displaystyle 3^{5}\cdot 9^{-2}=3^{5}\cdot 3^{-4}=3^{5-4}=3^1=3\,. |