3.1 Wurzeln
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-Keep([\s\n]+)in([\s\n]+)mind([\s\n]+)that: +Bedenke folgendes:)) |
K (Robot: Automated text replacement (-Useful([\s\n]+)web([\s\n]+)sites +Nützliche Websites)) |
||
Zeile 319: | Zeile 319: | ||
- | ''' | + | '''Nützliche Websites''' |
[http://mathforum.org/dr.math/faq/faq.sqrt.by.hand.html How to find the root of a number, without the help of calculators?] | [http://mathforum.org/dr.math/faq/faq.sqrt.by.hand.html How to find the root of a number, without the help of calculators?] | ||
</div> | </div> |
Version vom 08:11, 28. Okt. 2008
Theorie | Übungen |
Inhalt:
- Square roots and n'th roots
- Manipulating roots
Lernziele:
Nach diesem Abschnitt sollst Du folgendes können:
- How to calculate the square root of some simple integers.
- That the square root of a negative number has not been defined.
- That the square root of a number denotes the positive root.
- How to manipulate roots in the simplification of expressions containing roots.
- To recognise when the methods of manipulating roots are valid. (Non-negative arguments).
- How to simplify expressions containing quadratic roots in the denominator.
- When the n'th root of a negative number is defined (n odd).
Square roots
The well-known symbol a
The equation 2=4
(−2)=4
4
4=
2
4
The square root a
Square root of 2
It is therefore wrong to state that 4=
2
2
Beispiel 1
because0=0
02=0 and0=0
0 is not negative. since100=10
102=10 and10=100
10 is a positive number.-
since0
25=0
5
0 and52=0
5
0
5=0
25
0 is positive.5
since2
1
4142
1 and4142
1
4142
2
1 is positive.4142
- The equation
x2=2 has the solutionsx= and2
1
414
x=− .2
−1
414
is not defined, since there is no real number−4
x that satisfiesx2=−4 . because(−7)2=7
.(−7)2=
(−7)
(−7)=
49=
7
7=7
When taking square roots, it is useful to know some methods of calculation. As a=a1
2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
In this way we obtain the following rules for quadratic roots, which apply to all real numbers b
0:
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
( We must however, in the above division, assume as always that b is not 0.)
Beispiel 2
64
81=
64
81=8
9=72
925=
9
25=53
18
2=
18
2=
36=6
3
75=
375=
25=5
12=
4
3=
4
3=2
3
Note that the above calculations assume that 0
a
b
![]() ![]() ![]() ![]() ![]() ![]() |
but something here cannot be right. The explanation is that −1
Higher order roots
The cube root of a number 3a
Beispiel 3
as38=2
2 .2
2=8
since30
027=0
3
0 .3
0
3
0
3=0
027
because3−8=−2
(−2) .(−2)
(−2)=−8
Note that, unlike square roots, cube roots are also defined for negative numbers.
For any positive integers
- if
n is even anda then0
is the non-negative number that when multiplied by itselfna
n times givesa , - if
n is odd, is the number that when multiplied by itselfna
n times givesa .
The root na
n
Beispiel 4
since4625=5
5 .5
5
5=625
because5−243=−3
(−3) .(−3)
(−3)
(−3)
(−3)=−243
is not defined as6−17
6 is even and−17 is a negative number.
For b
0
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Simplification of expressions containing roots
Often, one can significantly simplify expressions containing roots by using the usual methods for roots . As is also the case when using the laws of exponents, it is desirable to reduce expressions into as "small" roots as possible. For example, it is a good idea to do the following
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
because it helps simplification as we see here
![]() ![]() ![]() |
By rewriting expressions containing roots in terms of "small" roots one can also sum roots of "the same kind", e.g.
![]() ![]() ![]() ![]() ![]() ![]() |
Beispiel 5
8
18=
2
9
2
4=
2
3
3
2
2
2=
2
32
2
22=3
22
2=32
6 72=2
3
8
9=2
3
2
2
2
3
3=2
3
22
32
2=2
32
3
2=
2
45+
20=
9
5+
4
5=
32
5+
22
5=3
5+2
5
=(3+2) 5=5
5
50+2
3−
32+
27=
5
10+2
3−
2
16+
3
9
= 5
2
5+2
3−
2
4
4+
3
3
3
= 52
2+2
3−
22
22
2+
3
32
=5 2+2
3−2
2
2+3
3
=(5−4) 2+(2+3)
3
= 2+5
3
3122
33=
33
42
33=2
33
33
34=2
34=2
32
2=2
32
32
32
32=22
32=
32
( where we have used the difference of two squares3+
2)(
3−
2)=(
3)2−(
2)2=3−2=1
(a+b)(a−b)=a2−b2 witha= and3
b= .2
Rational root expressions
When roots appear in a rational expression one often wants to avoid roots in the denominator (because it is difficult with hand calculations to divide by irrational numbers). By multiplying the numerator and denominator by 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
which usually is preferable.
In other cases, you can take advantage of the difference of two squares method,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Beispiel 6
510
3=
5
510
3
5=510
15=2
15
21+
3=
2
2(1+
3)
2=2
2+
6
3 2−2=3(
2+2)(
2−2)(
2+2)=3
2+6(
2)2−22=2−43
2+6=−23
2+6
2
6+
3=
2(
6−
3)(
6+
3)(
6−
3)=(
6)2−(
3)2
2
6−
2
3
=6−3 2
2
3−
2
3=32
3−
2
3=3(2−
2)
3
Tipps fürs lernen
Diagnostische Prüfung und Schlussprüfung
Nachdem Du fertig mit der Theorie bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".
Bedenke folgendes:
The square root of a number is always non-negative (that is, positive or zero)!
Rules for roots are actually a special case of laws of exponents .
For example: x=x1
2
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about square roots in the English Wikipedia
How do we know that the root of 2 is not a fraction?
Nützliche Websites
How to find the root of a number, without the help of calculators?