Lösung 4.2:4f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we add <math>2\pi</math> to <math>-5\pi/3\,</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle <math>-5\pi/3</math> and consequently has the same tangent value,
If we add <math>2\pi</math> to <math>-5\pi/3\,</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle <math>-5\pi/3</math> and consequently has the same tangent value,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\tan\Bigl(-\frac{5\pi}{3}\Bigr)
\tan\Bigl(-\frac{5\pi}{3}\Bigr)
= \tan\Bigl(-\frac{5\pi}{3}+2\pi\Bigr)
= \tan\Bigl(-\frac{5\pi}{3}+2\pi\Bigr)

Version vom 08:52, 22. Okt. 2008

If we add \displaystyle 2\pi to \displaystyle -5\pi/3\,, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle \displaystyle -5\pi/3 and consequently has the same tangent value,

\displaystyle \begin{align}

\tan\Bigl(-\frac{5\pi}{3}\Bigr) = \tan\Bigl(-\frac{5\pi}{3}+2\pi\Bigr) = \tan\frac{\pi}{3} = \frac{\sin\dfrac{\pi}{3}}{\cos\dfrac{\pi}{3}} = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} = \sqrt{3}\,\textrm{.} \end{align}