Lösung 4.1:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| If we use the distance formula | If we use the distance formula | ||
| - | {{ | + | {{Abgesetzte Formel||<math>d=\sqrt{(x-a)^2+(y-b)^2}</math>}} | 
| to determine the distance between the points <math>(x,y) = (-2,5)</math> and <math>(a,b) = (3,-1)</math>, we get | to determine the distance between the points <math>(x,y) = (-2,5)</math> and <math>(a,b) = (3,-1)</math>, we get | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt]  | d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt]  | ||
| &= \sqrt{(-5)^2+6^2}\\[5pt] | &= \sqrt{(-5)^2+6^2}\\[5pt] | ||
Version vom 08:48, 22. Okt. 2008
If we use the distance formula
| \displaystyle d=\sqrt{(x-a)^2+(y-b)^2} | 
to determine the distance between the points \displaystyle (x,y) = (-2,5) and \displaystyle (a,b) = (3,-1), we get
| \displaystyle \begin{align} d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt] &= \sqrt{(-5)^2+6^2}\\[5pt] &= \sqrt{25+36}\\[5pt] &= \sqrt{61}\,\textrm{.} \end{align} | 
 
		  