Lösung 3.1:5d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression <math>\sqrt{17}+\sqrt{13}</math>, and use the difference of two squares
We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression <math>\sqrt{17}+\sqrt{13}</math>, and use the difference of two squares
-
{{Displayed math||<math>(a-b)(a+b) = a^2-b^2</math>}}
+
{{Abgesetzte Formel||<math>(a-b)(a+b) = a^2-b^2</math>}}
with <math>a=\sqrt{17}</math> and <math>b=\sqrt{13}</math>. Both roots are squared away and we get
with <math>a=\sqrt{17}</math> and <math>b=\sqrt{13}</math>. Both roots are squared away and we get
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{\sqrt{17}-\sqrt{13}}
\frac{1}{\sqrt{17}-\sqrt{13}}
&= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt]
&= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt]

Version vom 08:38, 22. Okt. 2008

We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression \displaystyle \sqrt{17}+\sqrt{13}, and use the difference of two squares

\displaystyle (a-b)(a+b) = a^2-b^2

with \displaystyle a=\sqrt{17} and \displaystyle b=\sqrt{13}. Both roots are squared away and we get

\displaystyle \begin{align}

\frac{1}{\sqrt{17}-\sqrt{13}} &= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{(\sqrt{17})^{2}-(\sqrt{13})^{2}}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{17-13}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{4}\,\textrm{.} \end{align}

This expression cannot be simplified any further because neither 17 nor 13 contain any squares as factors.