Lösung 3.1:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| First expand the expression | First expand the expression | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) | \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) | ||
| &= \sqrt{5}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\\[5pt]  | &= \sqrt{5}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\\[5pt]  | ||
| Zeile 9: | Zeile 9: | ||
| Because <math>\sqrt{5}</math> and <math>\sqrt{2}</math> are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that | Because <math>\sqrt{5}</math> and <math>\sqrt{2}</math> are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.}</math>}} | 
| Note: The expansion of <math>\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr)</math> can also be done directly with the formula for difference of two squares <math>(a-b)(a+b) = a^{2} - b^{2}</math> using <math>a=\sqrt{5}</math> and <math>b=\sqrt{2}</math>. | Note: The expansion of <math>\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr)</math> can also be done directly with the formula for difference of two squares <math>(a-b)(a+b) = a^{2} - b^{2}</math> using <math>a=\sqrt{5}</math> and <math>b=\sqrt{2}</math>. | ||
Version vom 08:36, 22. Okt. 2008
First expand the expression
| \displaystyle \begin{align} \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) &= \sqrt{5}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\\[5pt] &= \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\,\textrm{.} \end{align} | 
Because \displaystyle \sqrt{5} and \displaystyle \sqrt{2} are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that
| \displaystyle \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.} | 
Note: The expansion of \displaystyle \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) can also be done directly with the formula for difference of two squares \displaystyle (a-b)(a+b) = a^{2} - b^{2} using \displaystyle a=\sqrt{5} and \displaystyle b=\sqrt{2}.
 
		  