Lösung 2.2:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The point of intersection is that point which satisfies the equations of both lines
The point of intersection is that point which satisfies the equations of both lines
-
{{Displayed math||<math>4x+5y+6=0\qquad\text{and}\qquad x=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>4x+5y+6=0\qquad\text{and}\qquad x=0\,\textrm{.}</math>}}
Substituting <math>x=0</math> into <math>4x+5y+6=0</math> gives
Substituting <math>x=0</math> into <math>4x+5y+6=0</math> gives
-
{{Displayed math||<math>4\cdot 0+5y+6=0\quad\Leftrightarrow\quad y=-\frac{6}{5}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>4\cdot 0+5y+6=0\quad\Leftrightarrow\quad y=-\frac{6}{5}\,\textrm{.}</math>}}
This gives the point of intersection as <math>\bigl(0,-\tfrac{6}{5}\bigr)</math>.
This gives the point of intersection as <math>\bigl(0,-\tfrac{6}{5}\bigr)</math>.

Version vom 08:29, 22. Okt. 2008

The point of intersection is that point which satisfies the equations of both lines

\displaystyle 4x+5y+6=0\qquad\text{and}\qquad x=0\,\textrm{.}

Substituting \displaystyle x=0 into \displaystyle 4x+5y+6=0 gives

\displaystyle 4\cdot 0+5y+6=0\quad\Leftrightarrow\quad y=-\frac{6}{5}\,\textrm{.}

This gives the point of intersection as \displaystyle \bigl(0,-\tfrac{6}{5}\bigr).