Lösung 2.2:2c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule | We can simplify the left-hand side in the equation by expanding the squares using the squaring rule | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(x+3)^{2}-(x-5)^{2} | (x+3)^{2}-(x-5)^{2} | ||
&= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt] | &= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt] | ||
Zeile 10: | Zeile 10: | ||
Thus, the equation is | Thus, the equation is | ||
- | {{ | + | {{Abgesetzte Formel||<math>16x-16=6x+4\,\textrm{.}</math>}} |
Now, move all ''x'''s to the left-hand side (subtract 6''x'' from both sides) and the constants to the right-hand side (add 16 to both sides) | Now, move all ''x'''s to the left-hand side (subtract 6''x'' from both sides) and the constants to the right-hand side (add 16 to both sides) | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
16x-6x&=4+16\,,\\[5pt] | 16x-6x&=4+16\,,\\[5pt] | ||
10x&=20\,\textrm{.} | 10x&=20\,\textrm{.} | ||
Zeile 21: | Zeile 21: | ||
Divide both sides by 10 to get the answer | Divide both sides by 10 to get the answer | ||
- | {{ | + | {{Abgesetzte Formel||<math>x=\frac{20}{10}=2\,\textrm{.}</math>}} |
Finally, we check that <math>x=2</math> satisfies the equation in the exercise | Finally, we check that <math>x=2</math> satisfies the equation in the exercise | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt] | \text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt] | ||
\text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.} | \text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 08:27, 22. Okt. 2008
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule
\displaystyle \begin{align}
(x+3)^{2}-(x-5)^{2} &= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt] &= x^{2}+6x+9-x^{2}+10x-25\\[5pt] &=16x-16\,\textrm{.} \end{align} |
Thus, the equation is
\displaystyle 16x-16=6x+4\,\textrm{.} |
Now, move all x's to the left-hand side (subtract 6x from both sides) and the constants to the right-hand side (add 16 to both sides)
\displaystyle \begin{align}
16x-6x&=4+16\,,\\[5pt] 10x&=20\,\textrm{.} \end{align} |
Divide both sides by 10 to get the answer
\displaystyle x=\frac{20}{10}=2\,\textrm{.} |
Finally, we check that \displaystyle x=2 satisfies the equation in the exercise
\displaystyle \begin{align}
\text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt] \text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.} \end{align} |