Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.1:1g

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The expression in the exercise is of the form <math> (a-b)^2 </math>, where <math> a=y^2</math> and <math> b=3x^2 </math>. With the help of the squaring rule <math> (a-b)^2 =a^2 -2ab +b^2 </math>, we have
The expression in the exercise is of the form <math> (a-b)^2 </math>, where <math> a=y^2</math> and <math> b=3x^2 </math>. With the help of the squaring rule <math> (a-b)^2 =a^2 -2ab +b^2 </math>, we have
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(y^2-3x^3)^2 &= (y^2)^2 -2\cdot y^2\cdot 3x^3 +(3x^3)^2 \\[3pt]
(y^2-3x^3)^2 &= (y^2)^2 -2\cdot y^2\cdot 3x^3 +(3x^3)^2 \\[3pt]
&= y^{2\cdot 2} -6x^3y^2 +3^2x^{3\cdot 2}\\[3pt]
&= y^{2\cdot 2} -6x^3y^2 +3^2x^{3\cdot 2}\\[3pt]

Version vom 08:21, 22. Okt. 2008

The expression in the exercise is of the form (ab)2, where a=y2 and b=3x2. With the help of the squaring rule (ab)2=a22ab+b2, we have

(y23x3)2=(y2)22y23x3+(3x3)2=y226x3y2+32x32=y46x3y2+9x6=9x66x3y2+y4.