4.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{:4.2 - Figure - A right-angled triangle with angle v and sides 70 and 110}} +{{:4.2 - Bild - Ein rechteckiges Dreieck mit dem Winkel v und den Seiten 70 und 110}}))
K (Robot: Automated text replacement (-{{:4.2 - Figure - A right-angled triangle with angles v and 60° and side 5}} +{{:4.2 - Bild - Ein rechteckiges Dreieck mit den Winkeln v und 60° und mit der Seite 5}}))
Zeile 47: Zeile 47:
|-
|-
|e)
|e)
-
|width="50%" | {{:4.2 - Figure - A right-angled triangle with angles v and 60° and side 5}}
+
|width="50%" | {{:4.2 - Bild - Ein rechteckiges Dreieck mit den Winkeln v und 60° und mit der Seite 5}}
|f)
|f)
|width="50%" | {{:4.2 - Figure - An isosceles triangle with top angle v and sides 2, 3 and 3}}
|width="50%" | {{:4.2 - Figure - An isosceles triangle with top angle v and sides 2, 3 and 3}}

Version vom 10:20, 21. Okt. 2008

 

Vorlage:Not selected tab Vorlage:Selected tab

 

Exercise 4.2:1

Using the trigonometric functions, determine the length of the side marked\displaystyle \,x\,

a)

[Image]

b)

[Image]

c)

[Image]

d)

[Image]

e)

[Image]

f)

[Image]

Exercise 4.2:2

Determine a trigonometric equation that is satisfied by \displaystyle \,v\,.

a)

[Image]

b)

[Image]

c)

[Image]

d)

[Image]

e)

[Image]

f) 4.2 - Figure - An isosceles triangle with top angle v and sides 2, 3 and 3

Exercise 4.2:3

Determine

a) \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)} b) \displaystyle \cos{2\pi} c) \displaystyle \sin{9\pi}
d) \displaystyle \cos{\displaystyle \frac{7\pi}{2}} e) \displaystyle \sin{\displaystyle \frac{3\pi}{4}} f) \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)}

Exercise 4.2:4

Determine

a) \displaystyle \cos{\displaystyle \frac{11\pi}{6}} b) \displaystyle \cos{\displaystyle \frac{11\pi}{3}} c) \displaystyle \tan{\displaystyle \frac{3\pi}{4}}
d) \displaystyle \tan{\pi} e) \displaystyle \tan{\displaystyle \frac{7\pi}{6}} f) \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)}

Exercise 4.2:5

Determine

a) \displaystyle \cos{135^\circ} b) \displaystyle \tan{225^\circ} c) \displaystyle \cos{330^\circ} d) \displaystyle \tan{495^\circ}

Exercise 4.2:6

Determine the length of the side marked \displaystyle \,x\,.

4.2 - Figure - Two triangles with angles 45° and 60°, respectively, and height difference x

Exercise 4.2:7

In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?

4.2 - Figure - A river

Exercise 4.2:8

A rod of length \displaystyle \,\ell\, hangs from two ropes of length \displaystyle \,a\, and \displaystyle \,b\, as shown in the figure. The ropes make angles \displaystyle \,\alpha\, and \displaystyle \,\beta\, with the vertical. Determine a trigonometric equation for the angle \displaystyle \,\gamma\, which the rod makes with the vertical.

4.2 - Figure - Hanging rod

Exercise 4.2:9

The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)

4.2 - Figure - A road from A to B via P and Q