Lösung 4.2:4f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we add
+
If we add <math>2\pi</math> to <math>-5\pi/3\,</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle <math>-5\pi/3</math> and consequently has the same tangent value,
-
<math>2\pi </math>
+
-
to
+
-
<math>-\frac{5\pi }{3}</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle
+
-
<math>-\frac{5\pi }{3}</math>
+
-
and consequently has the same tangent value:
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\tan\Bigl(-\frac{5\pi}{3}\Bigr)
-
& \tan \left( -\frac{5\pi }{3} \right)=\tan \left( -\frac{5\pi }{3}+2\pi \right)=\tan \frac{\pi }{3} \\
+
= \tan\Bigl(-\frac{5\pi}{3}+2\pi\Bigr)
-
& =\frac{\sin \frac{\pi }{3}}{\cos \frac{\pi }{3}}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3} \\
+
= \tan\frac{\pi}{3}
-
\end{align}</math>
+
= \frac{\sin\dfrac{\pi}{3}}{\cos\dfrac{\pi}{3}}
 +
= \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}
 +
= \sqrt{3}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 10:52, 9. Okt. 2008

If we add \displaystyle 2\pi to \displaystyle -5\pi/3\,, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle \displaystyle -5\pi/3 and consequently has the same tangent value,

Vorlage:Displayed math