Lösung 4.2:4f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we add | + | If we add <math>2\pi</math> to <math>-5\pi/3\,</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle <math>-5\pi/3</math> and consequently has the same tangent value, |
- | <math>2\pi </math> | + | |
- | to | + | |
- | <math>- | + | |
- | <math>- | + | |
- | and consequently has the same tangent value | + | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \tan\Bigl(-\frac{5\pi}{3}\Bigr) |
- | + | = \tan\Bigl(-\frac{5\pi}{3}+2\pi\Bigr) | |
- | + | = \tan\frac{\pi}{3} | |
- | \end{align}</math> | + | = \frac{\sin\dfrac{\pi}{3}}{\cos\dfrac{\pi}{3}} |
+ | = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} | ||
+ | = \sqrt{3}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 10:52, 9. Okt. 2008
If we add \displaystyle 2\pi to \displaystyle -5\pi/3\,, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle \displaystyle -5\pi/3 and consequently has the same tangent value,