Lösung 4.3:8c
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.3:8c moved to Solution 4.3:8c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | One could write |
- | < | + | <math>\tan \frac{u}{2}</math> |
- | {{ | + | as a quotient involving sine and cosine, and then continue with the formula for half-angles, |
- | {{ | + | |
- | < | + | |
- | {{ | + | <math>\tan \frac{u}{2}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=...</math> |
+ | |||
+ | |||
+ | but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side. | ||
+ | |||
+ | We write | ||
+ | <math>u</math> | ||
+ | as | ||
+ | <math>2\left( \frac{u}{2} \right)</math> | ||
+ | and use the formula for double angles (so as to end up with a right-hand side which has | ||
+ | <math>\frac{u}{2}</math> | ||
+ | as its argument) | ||
+ | |||
+ | |||
+ | <math>\frac{\sin u}{1+\cos u}=\frac{\sin \left( 2\centerdot \frac{u}{2} \right)}{1+\cos \left( 2\centerdot \frac{u}{2} \right)}=\frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}</math> | ||
+ | |||
+ | |||
+ | Writing the | ||
+ | <math>\text{1}</math> | ||
+ | in the denominator as | ||
+ | <math>\cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}</math> | ||
+ | using the Pythagorean identity, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}=\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{\cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}} \\ | ||
+ | & =\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{2\cos ^{2}\frac{u}{2}}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=\tan \frac{u}{2} \\ | ||
+ | \end{align}</math> |
Version vom 11:08, 30. Sep. 2008
One could write \displaystyle \tan \frac{u}{2} as a quotient involving sine and cosine, and then continue with the formula for half-angles,
\displaystyle \tan \frac{u}{2}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=...
but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.
We write \displaystyle u as \displaystyle 2\left( \frac{u}{2} \right) and use the formula for double angles (so as to end up with a right-hand side which has \displaystyle \frac{u}{2} as its argument)
\displaystyle \frac{\sin u}{1+\cos u}=\frac{\sin \left( 2\centerdot \frac{u}{2} \right)}{1+\cos \left( 2\centerdot \frac{u}{2} \right)}=\frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}
Writing the
\displaystyle \text{1}
in the denominator as
\displaystyle \cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}
using the Pythagorean identity,
\displaystyle \begin{align}
& \frac{2\cos \frac{u}{2}\centerdot \sin \frac{u}{2}}{1+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}}=\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{\cos ^{2}\frac{u}{2}+\sin ^{2}\frac{u}{2}+\cos ^{2}\frac{u}{2}-\sin ^{2}\frac{u}{2}} \\
& =\frac{2\cos \frac{u}{2}\sin \frac{u}{2}}{2\cos ^{2}\frac{u}{2}}=\frac{\sin \frac{u}{2}}{\cos \frac{u}{2}}=\tan \frac{u}{2} \\
\end{align}