Lösung 4.1:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.1:4b moved to Solution 4.1:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we use the distance formula |
- | < | + | |
- | {{ | + | |
+ | <math>d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}</math> | ||
+ | |||
+ | |||
+ | to determine the distance between the points | ||
+ | <math>\left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right)</math> | ||
+ | and | ||
+ | <math>\left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right)</math>, we get | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\ | ||
+ | & =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\ | ||
+ | \end{align}</math> |
Version vom 10:01, 27. Sep. 2008
If we use the distance formula
\displaystyle d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}
to determine the distance between the points
\displaystyle \left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right)
and
\displaystyle \left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right), we get
\displaystyle \begin{align}
& d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\
& =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\
\end{align}