Lösung 4.1:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:4b moved to Solution 4.1:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we use the distance formula
-
<center> [[Image:4_1_4b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}</math>
 +
 
 +
 
 +
to determine the distance between the points
 +
<math>\left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right)</math>
 +
and
 +
<math>\left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right)</math>, we get
 +
 
 +
 
 +
<math>\begin{align}
 +
& d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\
 +
& =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\
 +
\end{align}</math>

Version vom 10:01, 27. Sep. 2008

If we use the distance formula


\displaystyle d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}


to determine the distance between the points \displaystyle \left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right) and \displaystyle \left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right), we get


\displaystyle \begin{align} & d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\ & =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\ \end{align}