Lösung 4.1:1
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.1:1 moved to Solution 4.1:1: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The only thing we really need to remember is that one turn corresponds to |
- | < | + | <math>\text{36}0^{\text{o}}</math> |
- | {{ | + | or |
+ | <math>\text{2}\pi </math> | ||
+ | radians. Then we get: | ||
+ | |||
+ | a) | ||
+ | <math>\frac{1}{4}</math> | ||
+ | turn | ||
+ | <math>=\frac{1}{4}\centerdot 360^{\circ }=90^{\circ }</math> | ||
+ | and | ||
+ | |||
+ | <math>\frac{1}{4}</math> | ||
+ | turn | ||
+ | <math>=\frac{1}{4}\centerdot 2\pi </math> | ||
+ | radians | ||
+ | <math>=\frac{\pi }{2}</math> | ||
+ | radians, | ||
+ | |||
+ | |||
+ | b) | ||
+ | <math>\frac{3}{8}</math> | ||
+ | turn | ||
+ | <math>=\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }</math> | ||
+ | and | ||
+ | |||
+ | <math>\frac{3}{8}</math> | ||
+ | turn | ||
+ | <math>=\frac{3}{8}\centerdot 2\pi </math> | ||
+ | radians | ||
+ | <math>=\frac{3\pi }{4}</math> | ||
+ | radians, | ||
+ | |||
+ | |||
+ | |||
+ | c) | ||
+ | <math>-\frac{2}{3}</math> | ||
+ | turn | ||
+ | <math>=-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ }</math> | ||
+ | and | ||
+ | |||
+ | <math>-\frac{2}{3}</math> | ||
+ | turn | ||
+ | <math>=-\frac{2}{3}\centerdot 2\pi </math> | ||
+ | radians | ||
+ | <math>=-\frac{4\pi }{3}</math> | ||
+ | radians, | ||
+ | |||
+ | |||
+ | d) | ||
+ | <math>\frac{97}{12}</math> | ||
+ | turn | ||
+ | <math>=\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }</math> | ||
+ | and | ||
+ | |||
+ | <math>\frac{97}{12}</math> | ||
+ | turn | ||
+ | <math>=\frac{97}{12}\centerdot 2\pi </math> | ||
+ | radians | ||
+ | <math>=\frac{97\pi }{6}</math> | ||
+ | radians, |
Version vom 12:31, 26. Sep. 2008
The only thing we really need to remember is that one turn corresponds to \displaystyle \text{36}0^{\text{o}} or \displaystyle \text{2}\pi radians. Then we get:
a) \displaystyle \frac{1}{4} turn \displaystyle =\frac{1}{4}\centerdot 360^{\circ }=90^{\circ } and
\displaystyle \frac{1}{4} turn \displaystyle =\frac{1}{4}\centerdot 2\pi radians \displaystyle =\frac{\pi }{2} radians,
b)
\displaystyle \frac{3}{8}
turn
\displaystyle =\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }
and
\displaystyle \frac{3}{8} turn \displaystyle =\frac{3}{8}\centerdot 2\pi radians \displaystyle =\frac{3\pi }{4} radians,
c) \displaystyle -\frac{2}{3} turn \displaystyle =-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ } and
\displaystyle -\frac{2}{3} turn \displaystyle =-\frac{2}{3}\centerdot 2\pi radians \displaystyle =-\frac{4\pi }{3} radians,
d)
\displaystyle \frac{97}{12}
turn
\displaystyle =\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }
and
\displaystyle \frac{97}{12} turn \displaystyle =\frac{97}{12}\centerdot 2\pi radians \displaystyle =\frac{97\pi }{6} radians,