Lösung 4.1:1

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:1 moved to Solution 4.1:1: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The only thing we really need to remember is that one turn corresponds to
-
<center> [[Image:4_1_1.gif]] </center>
+
<math>\text{36}0^{\text{o}}</math>
-
{{NAVCONTENT_STOP}}
+
or
 +
<math>\text{2}\pi </math>
 +
radians. Then we get:
 +
 
 +
a)
 +
<math>\frac{1}{4}</math>
 +
turn
 +
<math>=\frac{1}{4}\centerdot 360^{\circ }=90^{\circ }</math>
 +
and
 +
 +
<math>\frac{1}{4}</math>
 +
turn
 +
<math>=\frac{1}{4}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{\pi }{2}</math>
 +
radians,
 +
 +
 
 +
b)
 +
<math>\frac{3}{8}</math>
 +
turn
 +
<math>=\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }</math>
 +
and
 +
 +
<math>\frac{3}{8}</math>
 +
turn
 +
<math>=\frac{3}{8}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{3\pi }{4}</math>
 +
radians,
 +
 
 +
 +
 
 +
c)
 +
<math>-\frac{2}{3}</math>
 +
turn
 +
<math>=-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ }</math>
 +
and
 +
 +
<math>-\frac{2}{3}</math>
 +
turn
 +
<math>=-\frac{2}{3}\centerdot 2\pi </math>
 +
radians
 +
<math>=-\frac{4\pi }{3}</math>
 +
radians,
 +
 
 +
 
 +
d)
 +
<math>\frac{97}{12}</math>
 +
turn
 +
<math>=\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }</math>
 +
and
 +
 +
<math>\frac{97}{12}</math>
 +
turn
 +
<math>=\frac{97}{12}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{97\pi }{6}</math>
 +
radians,

Version vom 12:31, 26. Sep. 2008

The only thing we really need to remember is that one turn corresponds to \displaystyle \text{36}0^{\text{o}} or \displaystyle \text{2}\pi radians. Then we get:

a) \displaystyle \frac{1}{4} turn \displaystyle =\frac{1}{4}\centerdot 360^{\circ }=90^{\circ } and

\displaystyle \frac{1}{4} turn \displaystyle =\frac{1}{4}\centerdot 2\pi radians \displaystyle =\frac{\pi }{2} radians,


b) \displaystyle \frac{3}{8} turn \displaystyle =\frac{3}{8}\centerdot 360^{\circ }=135^{\circ } and

\displaystyle \frac{3}{8} turn \displaystyle =\frac{3}{8}\centerdot 2\pi radians \displaystyle =\frac{3\pi }{4} radians,


c) \displaystyle -\frac{2}{3} turn \displaystyle =-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ } and

\displaystyle -\frac{2}{3} turn \displaystyle =-\frac{2}{3}\centerdot 2\pi radians \displaystyle =-\frac{4\pi }{3} radians,


d) \displaystyle \frac{97}{12} turn \displaystyle =\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ } and

\displaystyle \frac{97}{12} turn \displaystyle =\frac{97}{12}\centerdot 2\pi radians \displaystyle =\frac{97\pi }{6} radians,