Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K |
Zeile 24: |
Zeile 24: |
| |- | | |- |
| |e) | | |e) |
- | |width="50%" | {{:4.2 - Figur - Rätvinklig triangel med vinkeln 35° och sidor 11 och x}} | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle 35° and sides 11 and x}} |
| |f) | | |f) |
| |width="50%" | | | |width="50%" | |
Version vom 07:31, 16. Sep. 2008
Exercise 4.2:1
Using the trigonometric functions, determine the length of the side markedx
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:2
Determine a trigonometric equation that is satisfied by v.
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:3
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:4
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:5
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:6
Determine the length of the side marked x.
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:7
In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:8
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Exercise 4.2:9
The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen
Zeige wenigerZeige weniger |
Zeige mehrZeige mehr |
Alles ausblendenAlles ausblenden |
Alles anzeigenAlles anzeigen