4.2 Übungen
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-{{:4.2 - Figur - Älv}} +{{:4.2 - Figure - A river}})) |
K (Robot: Automated text replacement (-{{:4.2 - Figur - Hängande stång}} +{{:4.2 - Figure - Hanging rod}})) |
||
Zeile 132: | Zeile 132: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
- | |width="100%" | <center> {{:4.2 - | + | |width="100%" | <center> {{:4.2 - Figure - Hanging rod}} </center> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:8|Solution |Solution 4.2:8}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:8|Solution |Solution 4.2:8}} |
Version vom 14:44, 15. Sep. 2008
Exercise 4.2:1
Using the trigonometric functions, determine the length of the side marked\displaystyle \,x\,
Exercise 4.2:2
Determine a trigonometric equation that is satisfied by \displaystyle \,v\,.
Exercise 4.2:3
Determine
a) | \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)} | b) | \displaystyle \cos{2\pi} | c) | \displaystyle \sin{9\pi} |
d) | \displaystyle \cos{\displaystyle \frac{7\pi}{2}} | e) | \displaystyle \sin{\displaystyle \frac{3\pi}{4}} | f) | \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)} |
Exercise 4.2:4
Determine
a) | \displaystyle \cos{\displaystyle \frac{11\pi}{6}} | b) | \displaystyle \cos{\displaystyle \frac{11\pi}{3}} | c) | \displaystyle \tan{\displaystyle \frac{3\pi}{4}} |
d) | \displaystyle \tan{\pi} | e) | \displaystyle \tan{\displaystyle \frac{7\pi}{6}} | f) | \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)} |
Exercise 4.2:5
Determine
a) | \displaystyle \cos{135^\circ} | b) | \displaystyle \tan{225^\circ} | c) | \displaystyle \cos{330^\circ} | d) | \displaystyle \tan{495^\circ} |
Exercise 4.2:6
Determine the length of the side marked \displaystyle \,x\,.
|
Exercise 4.2:7
In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?
|
Exercise 4.2:8
A rod of length \displaystyle \,\ell\, hangs from two ropes of length \displaystyle \,a\, and \displaystyle \,b\, as shown in the figure. The ropes make angles \displaystyle \,\alpha\, and \displaystyle \,\beta\, with the vertical. Determine a trigonometric equation for the angle \displaystyle \,\gamma\, which the rod makes with the vertical.
|
Exercise 4.2:9
The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)
|