Lösung 4.3:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.3:1c moved to Solution 4.3:1c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The tangent value of the angle |
- | < | + | <math>{2\pi }/{7}\;</math> |
+ | is the gradient of the line which makes an angle | ||
+ | <math>{2\pi }/{7}\;</math> | ||
+ | with the | ||
+ | <math>x</math> | ||
+ | -axis. | ||
- | < | + | slope = |
- | {{ | + | <math>{\tan 2\pi }/{7}\;</math> |
+ | FIGURE1 slope = | ||
+ | <math>{\tan 2\pi }/{7}\;</math> | ||
+ | FIGURE2 | ||
+ | |||
+ | From the figure, we see that the angle between | ||
+ | <math>{\pi }/{2}\;</math> | ||
+ | and | ||
+ | <math>2\pi </math> | ||
+ | which gives a line with the same slope as the angle | ||
+ | <math>{2\pi }/{7}\;</math> | ||
+ | is | ||
+ | <math>{v=2\pi }/{7}\;+\pi ={9\pi }/{7}\;</math> | ||
+ | . |
Version vom 12:07, 12. Sep. 2008
The tangent value of the angle \displaystyle {2\pi }/{7}\; is the gradient of the line which makes an angle \displaystyle {2\pi }/{7}\; with the \displaystyle x -axis.
slope = \displaystyle {\tan 2\pi }/{7}\; FIGURE1 slope = \displaystyle {\tan 2\pi }/{7}\; FIGURE2
From the figure, we see that the angle between \displaystyle {\pi }/{2}\; and \displaystyle 2\pi which gives a line with the same slope as the angle \displaystyle {2\pi }/{7}\; is \displaystyle {v=2\pi }/{7}\;+\pi ={9\pi }/{7}\; .