Svar 3.3:4
Förberedande kurs i matematik 2
(Skillnad mellan versioner)
			  			                                                      
		          
			 (Ny sida: {| width="100%" cellspacing="10px" |a) |width="50%"|<math>z= \left\{\begin{matrix} \phantom{-}(1+i)/\sqrt{2}\\ -(1+i)/\sqrt{2}\\ \end{matrix}\right.</math> |b) |width="50%"| <math>z = \left...)  | 
				 (Ändrat svaret till c-uppgiften)  | 
			||
| Rad 6: | Rad 6: | ||
|-  | |-  | ||
|c)  | |c)  | ||
| - | |width="50%"| <math>z= \left\{\begin{matrix} -1 \\ \  | + | |width="50%"| <math>z= \left\{\begin{matrix} -1+i\sqrt{2} \\ -1-i\sqrt{2}  \\ \end{matrix}\right. </math>  | 
|d)  | |d)  | ||
|width="50%"| <math>z= \left\{\begin{matrix} (1+i\sqrt{15})/4\\ (1-i\sqrt{15})/4 \end{matrix}\right.</math>  | |width="50%"| <math>z= \left\{\begin{matrix} (1+i\sqrt{15})/4\\ (1-i\sqrt{15})/4 \end{matrix}\right.</math>  | ||
|}  | |}  | ||
Nuvarande version
| a) | \displaystyle z= \left\{\begin{matrix} \phantom{-}(1+i)/\sqrt{2}\\ -(1+i)/\sqrt{2}\\ \end{matrix}\right. | b) | \displaystyle z = \left\{\begin{matrix} 2+i \\ 2-i \\ \end{matrix}\right. | 
| c) | \displaystyle z= \left\{\begin{matrix} -1+i\sqrt{2} \\ -1-i\sqrt{2} \\ \end{matrix}\right. | d) | \displaystyle z= \left\{\begin{matrix} (1+i\sqrt{15})/4\\ (1-i\sqrt{15})/4 \end{matrix}\right. | 
