Svar 3.3:6
Förberedande kurs i matematik 2
(Skillnad mellan versioner)
(Ny sida: Lösningar: <math>z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,...) |
|||
Rad 1: | Rad 1: | ||
Lösningar: | Lösningar: | ||
<math>z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,\sin\frac{9\pi}{8}\bigr)}\right. = \left\{\eqalign{&\textstyle\phantom{-}{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}+i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}\cr &\textstyle -{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}-i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}}\right.</math> | <math>z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,\sin\frac{9\pi}{8}\bigr)}\right. = \left\{\eqalign{&\textstyle\phantom{-}{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}+i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}\cr &\textstyle -{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}-i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}}\right.</math> | ||
+ | Uttryck: | ||
+ | <math>\displaystyle\tan \frac{\pi}{8} = \sqrt{2} - 1</math> |
Versionen från 7 april 2008 kl. 13.13
Lösningar: \displaystyle z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,\sin\frac{9\pi}{8}\bigr)}\right. = \left\{\eqalign{&\textstyle\phantom{-}{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}+i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}\cr &\textstyle -{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}-i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}}\right. Uttryck: \displaystyle \displaystyle\tan \frac{\pi}{8} = \sqrt{2} - 1