Svar 1.2:3
Förberedande kurs i matematik 2
(Skillnad mellan versioner)
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="33%"| <math>\displaystyle\frac{1}{2\sqrt{x}\sqrt{x+1}}</math> |b) |width="33%"| <math>\displaystyle - \frac{1}{(x-1)^{3/2}\sqrt{x+1}}</math> |...) |
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="33%"| <math>\displaystyle\frac{1}{2\sqrt{x}\sqrt{x+1}}</math> |b) |width="33%"| <math>\displaystyle - \frac{1}{(x-1)^{3/2}\sqrt{x+1}}</math> |...) |
Nuvarande version
a) | \displaystyle \displaystyle\frac{1}{2\sqrt{x}\sqrt{x+1}} | b) | \displaystyle \displaystyle - \frac{1}{(x-1)^{3/2}\sqrt{x+1}} | c) | \displaystyle \displaystyle - \frac{1-2x^2}{x^2(1-x^2)^{3/2}} |
d) | \displaystyle -\cos\cos\sin x \cdot \sin\sin x \cdot \cos x | e) | \displaystyle e^{\sin x^2}\cdot \cos x^2 \cdot 2x | f) | \displaystyle \displaystyle x^{\tan x}\Bigl(\frac{\ln x}{\cos^2x}+\frac{\tan x}{x}\Bigr) |