1.3 Övningar

Förberedande kurs i matematik 2

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (1 maj 2008 kl. 14.23) (redigera) (ogör)
m
 
(3 mellanliggande versioner visas inte.)
Rad 12: Rad 12:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%"|
+
|width="50%"|{{:1.3 - Figur - Grafen till övning 1.3:1a}}
|b)
|b)
-
|width="50%"|
+
|width="50%"|{{:1.3 - Figur - Grafen till övning 1.3:1b}}
|-
|-
|c)
|c)
-
|width="50%"|
+
|width="50%"|{{:1.3 - Figur - Grafen till övning 1.3:1c}}
|d)
|d)
-
|width="50%"|
+
|width="50%"|{{:1.3 - Figur - Grafen till övning 1.3:1d}}
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 1.3:1|Lösning a|Lösning 1.3:1a|Lösning b|Lösning 1.3:1b|Lösning c|Lösning 1.3:1c|Lösning d|Lösning 1.3:1d}}
</div>{{#NAVCONTENT:Svar|Svar 1.3:1|Lösning a|Lösning 1.3:1a|Lösning b|Lösning 1.3:1b|Lösning c|Lösning 1.3:1c|Lösning d|Lösning 1.3:1d}}
Rad 25: Rad 25:
===Övning 1.3:2===
===Övning 1.3:2===
<div class="ovning">
<div class="ovning">
-
Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter för funktionerna som beskrivs i graferna nedan. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.
+
Bestäm lokala extrempunkter och skissera funktionsgrafen till
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Rad 41: Rad 41:
===Övning 1.3:3===
===Övning 1.3:3===
<div class="ovning">
<div class="ovning">
-
Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter för funktionerna som beskrivs i graferna nedan. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.
+
Bestäm alla lokala extrempunkter till
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Rad 60: Rad 60:
===Övning 1.3:4===
===Övning 1.3:4===
<div class="ovning">
<div class="ovning">
 +
{| width="100%"
 +
| width="95%" |
Var på kurvan <math>y=1-x^2</math> i första kvadranten ska punkten <math>P</math> väljas för att rektangeln i figuren till höger ska ha maximal area?
Var på kurvan <math>y=1-x^2</math> i första kvadranten ska punkten <math>P</math> väljas för att rektangeln i figuren till höger ska ha maximal area?
-
Bild
+
| width="5%" |
-
 
+
||{{:1.3 - Figur - Parabeln y = 1 - x² med rektangel}}
 +
|}
</div>{{#NAVCONTENT:Svar|Svar 1.3:4|Lösning |Lösning 1.3:4}}
</div>{{#NAVCONTENT:Svar|Svar 1.3:4|Lösning |Lösning 1.3:4}}
===Övning 1.3:5===
===Övning 1.3:5===
<div class="ovning">
<div class="ovning">
-
En <math>30</math> cm bred plåt ska användas för att tillverka en ränna. Parallellt med plåtens långsidor viks kanterna upp enligt figuren. Hur stor ska vinkeln <math>\alpha</math> vara för att ränna ska rymma så mycket vatten som möjligt?
+
{| width="100%"
-
Bild
+
| width="95%" |
-
 
+
En 30&nbsp;cm bred plåt ska användas för att tillverka en ränna. Parallellt med plåtens långsidor viks kanterna upp enligt figuren. Hur stor ska vinkeln <math>\alpha</math> vara för att rännan ska rymma så mycket vatten som möjligt?
 +
| width="5%" |
 +
||{{:1.3 - Figur - Plåtränna}}
 +
|}
</div>{{#NAVCONTENT:Svar|Svar 1.3:5|Lösning |Lösning 1.3:5}}
</div>{{#NAVCONTENT:Svar|Svar 1.3:5|Lösning |Lösning 1.3:5}}

Nuvarande version

       Teori          Övningar      

Övning 1.3:1

Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter för funktionerna som beskrivs i graferna nedan. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.

a)

[Image]

b)

[Image]

c)

[Image]

d)

[Image]

Övning 1.3:2

Bestäm lokala extrempunkter och skissera funktionsgrafen till

a) \displaystyle f(x)= x^2 -2x+1 b) \displaystyle f(x)=2+3x-x^2
c) \displaystyle f(x)= 2x^3+3x^2-12x+1 d) \displaystyle f(x)=x^3-9x^2+30x-15

Övning 1.3:3

Bestäm alla lokala extrempunkter till

a) \displaystyle f(x)=-x^4+8x^3-18x^2 b) \displaystyle f(x)=e^{-3x} +5x
c) \displaystyle f(x)= x\ln x -9 d) \displaystyle f(x)=\displaystyle\frac{1+x^2}{1+x^4}
e) \displaystyle f(x)=(x^2-x-1)e^x\displaystyle -3\le x\le 3

Övning 1.3:4

Var på kurvan \displaystyle y=1-x^2 i första kvadranten ska punkten \displaystyle P väljas för att rektangeln i figuren till höger ska ha maximal area?

[Image]

Övning 1.3:5

En 30 cm bred plåt ska användas för att tillverka en ränna. Parallellt med plåtens långsidor viks kanterna upp enligt figuren. Hur stor ska vinkeln \displaystyle \alpha vara för att rännan ska rymma så mycket vatten som möjligt?

[Image]

Övning 1.3:6

En plåtmugg som har formen av en rät cirkulär cylinder ska tillverkas. Vilken radie och höjd ska muggen ha om man vill att den har en bestämd volym \displaystyle V samtidigt som man använder så lite plåt som möjligt.

Övning 1.3:7

Ur en cirkulär skiva skärs en cirkelsektor bort och de två radiella kanter som uppstår fästs ihop så att man får en konformad strut. Hur stor vinkel ska den borttagna cirkelsektorn ha för att konen ska få maximal volym?