Solution 4.1:1
From Förberedande kurs i matematik 1
The only thing we really need to remember is that one revolution corresponds to 360° or \displaystyle 2\pi radians. Then we get:
a) | \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} and |
\displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,} | |
b) | \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} and |
\displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,} | |
c) | \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} and |
\displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,} | |
d) | \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} and |
\displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.} |