Solution 4.1:1

From Förberedande kurs i matematik 1

Jump to: navigation, search

The only thing we really need to remember is that one revolution corresponds to 360° or \displaystyle 2\pi radians. Then we get:

a)   \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} and
\displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,}
 
b)   \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} and
\displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}
 
c)   \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} and
\displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,}
 
d)   \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} and
\displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.}