Huvudsida
SamverkanLinalg
Detta är en wiki för utveckling av webbstöd i linjär algebra för Linköpings universitet (Campus Norrköping).
Kapitel 16 Linjära avbildningar
Sektion 16.1 Definition av linjär avbildning
Läs textavsnittet om definition av linjär avbildning Bild:Kap16 1.pdf
Du har nu läst definitionen på linjär avbildning och här kommer några övningar som testar om du har tagit till dig stoffet.
Övningar
1. Låt \displaystyle F och \displaystyle G vara avbildningar på rummet, som i basen \displaystyle \underline{\boldsymbol{e}} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\} ges av
Undersök om \displaystyle F är linjär. Skriv avbildningen som en matrisprodukt, \displaystyle Y=AX, där \displaystyle A inte beror på \displaystyle X. Bestäm också basvektorernas bilder och visa hur dessa kan avläsas ur \displaystyle A. Undersök om \displaystyle G är linjär.
2. Gör övning 17.2 Låt \displaystyle \boldsymbol{a}