2.2 Mängder
SamverkanFlervariabelanalysLIU
Innehåll |
Svar till a)
Svar till b)
Övning 3.2.2
Skissa ellipserna
a) \displaystyle 4x^2+\frac{1}{9}y^2=1.
b) \displaystyle \frac{(x+1)^2}{9}+\frac{(y-2)^2}{4}=1.
c) \displaystyle x^2+y^2+2x-4y=1
Svar till a)
Svar till b)
Svar till c)
Tips och lösning till a)
Tips och lösning till b)
Tips och lösning till c)
Övning 3.2.3
Skissa hyperblerna
a) \displaystyle x^2-y^2=1.
b) \displaystyle 4x^2-\frac{1}{9}y^2=1.
c) \displaystyle 4x^2-\frac{1}{9}y^2=-1
Svar till a)
Svar till b)
Svar till c)
Tips och lösning till a)
Tips och lösning till b)
Tips och lösning till c)
Övning 3.2.4
Rita följande mängder
a) \displaystyle \{(x,y)\in\mathbb{R}^2:\, 4x^2+\frac{1}{9}y^2<1\}.
b) \displaystyle \{(x,y)\in\mathbb{R}^2:\ 4x^2+\frac{1}{9}y^2\ge 1\}.
c) \displaystyle \{(x,y)\in\mathbb{R}^2:\, x\le 2y^2\}
Svar till a)
Svar till b)
Svar till c)
Tips och lösning till a)
Tips och lösning till b)
Tips och lösning till c)
Övning 3.2.5
Rita följande mängder
a) \displaystyle \{(x,y)\in\mathbb{R}^2:\, x^2-y^2>1,\ 2x-y<3 ,\ x>0\}
b) \displaystyle \{(x,y\in\mathbb{R}^2:\, y< x,\ x^2+y^2\le 1\}
c) \displaystyle \{(x,y)\in\mathbb{R}^2:\, 4x^2+\frac{1}{9}y^2<1,\ y\ge -x\}
Svar till a)
Svar till b)
Svar till c)
Tips och lösning till a)
Tips och lösning till b)
Tips och lösning till c)