10.1 Optimering på kompakta områden
SamverkanFlervariabelanalysLIU
10.1 | 10.2 | 10.3 |
Innehåll |
Övning 11.1.1
Avgör om följande funktioner säkert antar ett största och minsta värde i mängden \displaystyle D
a) \displaystyle f(x,y)=(x^{4}+y^{3})e^{x^{2}-y^{2}} i \displaystyle D=\{(x,y)\in\rtv : \ |x|+|y|\leq 1 \}
b) \displaystyle f(x,y)=(x^{4}+y^{3})e^{x^{2}-y^{2}} i \displaystyle D=\{(x,y)\in\rtv : \ |x+y|< 1 \}
c) \displaystyle f(x,y)=\frac{x+y}{x^{2}+y^{2}} i \displaystyle D=x^{2}+y^{2}\leq 1
Svar
Tips och lösning till a)
Tips och lösning till b)
Tips och lösning till c)