8.3 Implicit givna funktioner

SamverkanFlervariabelanalysLIU

Version från den 17 juli 2013 kl. 13.17; Olosv (Diskussion | bidrag)
Hoppa till: navigering, sök
       8.1          8.2          8.3      

Innehåll

Övning 9.3.1

Avgör för vilka av följande funktioner som ekvationen \displaystyle f(x,y)=0 definierar \displaystyle y som en funktion av \displaystyle x i de angivna punkterna, bestäm även i förekommande fall \displaystyle y' i angivna punkter

a) \displaystyle f(x,y)=x^2-xy+y^2-3 i punkten \displaystyle (1,2)

b) \displaystyle f(x,y)=x\cos(xy) i punkten \displaystyle (1,\pi/2)

c) \displaystyle f(x,y)=x^5 +y^5+xy+1 i punkten \displaystyle (1,-1)

Övning 9.3.2

Avgör för vilka av följande funktioner som ekvationen \displaystyle f(x,y,z)=0 definierar \displaystyle y som en funktion av \displaystyle x och \displaystyle z i de angivna punkterna, bestäm även i förekommande fall \displaystyle y'_x och \displaystyle y'_z i angivna punkter

a) \displaystyle f(x,y,z)=x+y+z+\cos (xyz) i punkten \displaystyle (0,-1,0)

b) \displaystyle f(x,y,z)=x\cos(xyz) i punkten \displaystyle (1,1,\pi/2)

c) \displaystyle f(x,y,z)=x+y+z-e^{xyz} i punkten \displaystyle (0,0,1)

Övning 9.3.3

Vi har en nivåkurva \displaystyle \sin(x+y)=xy+2x.

a) Visa att kurvan definierar \displaystyle y som en funktion av \displaystyle x nära

   punkten \displaystyle (0,0). Bestäm också \displaystyle y'(0)

b) Bestäm Taylorpolynomet av \displaystyle y(x) kring origo med termer upp till och med ordning två.