Tips och lösning till övning 13.4.3a
SamverkanFlervariabelanalysLIU
Rita området. Integralen är generaliserad eftersom området är obegränsat. Bilda en uttömmande följd av kompakta halvcirkelskivor \displaystyle \Omega med radie \displaystyle R>0 i högra halvplanet. Dubbelintegralen över \displaystyle \Omega kan via variabelbyte till polära koordinater beräknas som en itererad integral
\iint_{\Omega}\frac{xdxdy}{(1+x^{2}+y^{2})^{2}}\,dxdy = \left(\int_{-\pi}^{\pi} \cos\theta\,d\theta\right)\left(\int_{0}^{R} \frac{r^2}{(1+r^{2})^{2}}\,dr\right).