4.2 Kontinuitet

SamverkanFlervariabelanalysLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 25: Rad 25:
c) <math>f(x,y)=\displaystyle\frac{xy^2-y^2}{x^2+y^2-2x+1}</math> då <math>(x,y)\not=(1,0)</math>
c) <math>f(x,y)=\displaystyle\frac{xy^2-y^2}{x^2+y^2-2x+1}</math> då <math>(x,y)\not=(1,0)</math>
-
d) <math>f(x,y)=\displaystyle{xe^{-1/\sqrt{x^2+y^2}}}</math> då <math>(x,y)\not=0</math>
+
d) <math>f(x,y)=\displaystyle{xe^{-1/\sqrt{x^2+y^2}}}</math> då <math>(x,y)\not=(0,0)</math>
</div>{{#NAVCONTENT:Svar|Svar Övning 5.2.2|Tips och lösning|Tips och lösning}}
</div>{{#NAVCONTENT:Svar|Svar Övning 5.2.2|Tips och lösning|Tips och lösning}}

Versionen från 23 augusti 2013 kl. 07.49

       4.1          4.2      


Övning 5.2.1

I vilka punkter är \displaystyle f(x,y)= (x^2+y^2)\ln (x^2+y^2)\displaystyle (x,y)\not=(0,0) kontinuerlig? Kan vi definiera \displaystyle f i undantagspunkten så att \displaystyle f blir kontinuerlig även där?


Övning 5.2.2

I vilka punkter är \displaystyle f(x,y)= (x^2+y^2)\ln (x^2+y^2)\displaystyle (x,y)\not=(0,0) kontinuerlig? Kan vi definiera \displaystyle f i undantagspunkten så att \displaystyle f blir kontinuerlig även där?

a) \displaystyle f(x,y)=\frac{xy}{x^2+y^2}\displaystyle (x,y)\not=(0,0)

b) \displaystyle f(x,y)=\displaystyle\frac{(x+y)^4}{x^2+y^2}\displaystyle (x,y)\not=(0,0)

c) \displaystyle f(x,y)=\displaystyle\frac{xy^2-y^2}{x^2+y^2-2x+1}\displaystyle (x,y)\not=(1,0)

d) \displaystyle f(x,y)=\displaystyle{xe^{-1/\sqrt{x^2+y^2}}}\displaystyle (x,y)\not=(0,0)