12.2 Itererad integration

SamverkanFlervariabelanalysLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 35: Rad 35:
</div>{{#NAVCONTENT:Svar|Svar Övning 13.2.2|Tips och lösning till a)|Tips och lösning till övning 13.2.2a|Tips och lösning till b)|Tips och lösning till övning 13.2.2b|Tips och lösning till c)|Tips och lösning till övning 13.2.2c}}
</div>{{#NAVCONTENT:Svar|Svar Övning 13.2.2|Tips och lösning till a)|Tips och lösning till övning 13.2.2a|Tips och lösning till b)|Tips och lösning till övning 13.2.2b|Tips och lösning till c)|Tips och lösning till övning 13.2.2c}}
 +
 +
<div class="ovning">
 +
===Övning 13.2.3===
 +
Bestäm integralerna
 +
 +
a) <math>\int_0^1\left(\int_y^1 e^{x^2}dx\right) dy</math>
 +
 +
b) <math>\int_0^1\left(\int_{\sqrt[3]{x}}^1 \frac{1}{1+y^8}dx\right) dy</math>
 +
 +
</div>{{#NAVCONTENT:Svar|Svar Övning 13.2.3|Tips och lösning till a)|Tips och lösning till övning 13.2.3a|Tips och lösning till b)|Tips och lösning till övning 13.2.3b}}

Versionen från 23 juli 2013 kl. 08.57

       12.1          12.2          12.3          12.3      

Innehåll

Övning 13.2.1

Beräkna följande integraler

a) \displaystyle \iint_D (x+y)dxdy\displaystyle D=\{(x,y)\in\mathbb{R}^2 :0< x< 2,\ 1< y< 2 \}

b) \displaystyle \iint_D xy\sin(x^2) dxdy\displaystyle D=\{(x,y)\in\mathbb{R}^2 :0< x< \pi, \ 0< y< 1 \}

c) \displaystyle \iint_D (x+y)dxdy\displaystyle D är triangeln med hörn i (0,0), (0,1) och (1,1)

Övning 13.2.2

Beräkna följande integraler

a) \displaystyle \iint_D x\cos(x+y)dxdy\displaystyle D är triangeln med hörn i (0,0), \displaystyle (\pi ,0) och \displaystyle (\pi ,-\pi )

b) \displaystyle \iint_D(x^{2}+y^{2})dxdy\displaystyle D=\{(x,y)\in\mathbb{R}^2 : |x|+|y|<1 \}

c) \displaystyle \iint_De^{2x+y}dxdy\displaystyle D =\{(x,y)\in\mathbb{R}^2: |x+y|< 1 \mbox{ och } -1< x< 1 \}

Övning 13.2.3

Bestäm integralerna

a) \displaystyle \int_0^1\left(\int_y^1 e^{x^2}dx\right) dy

b) \displaystyle \int_0^1\left(\int_{\sqrt[3]{x}}^1 \frac{1}{1+y^8}dx\right) dy