Svar Övning 3.3.1

SamverkanFlervariabelanalysLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (12 mars 2012 kl. 10.12) (redigera) (ogör)
 
Rad 1: Rad 1:
-
a) <math>D_f=\{(x,y)\in\mathbb{R}^2:\, (x-1)^2+(y-2)^2<2\}</math>.
+
a) <math>D_f=\{(x,y)\in\mathbb{R}^2:\, (x-1)^2+(y-2)^2\le2\}</math>. <math>V_f=[0,\sqrt{2}]</math>.
-
b) <math>D_f=\{(x,y)\in\mathbb{R}^2:\, -1\le x+2y\le 1\}</math>.
+
b) <math>D_f=\{(x,y)\in\mathbb{R}^2:\, -1\le x+2y\le 1\}</math>. <math>V_f=[-\frac{\pi}{2},\frac{\pi}{2}]</math>.
-
c) <math>D_f=\{(x,y,z)\in\mathbb{R}^3:\, xyz> 0\}</math>.
+
c) <math>D_f=\{(x,y,z)\in\mathbb{R}^3:\, xyz> 0\}</math>. <math>V_f=]-\infty,\infty[</math>.

Nuvarande version

a) \displaystyle D_f=\{(x,y)\in\mathbb{R}^2:\, (x-1)^2+(y-2)^2\le2\}. \displaystyle V_f=[0,\sqrt{2}].

b) \displaystyle D_f=\{(x,y)\in\mathbb{R}^2:\, -1\le x+2y\le 1\}. \displaystyle V_f=[-\frac{\pi}{2},\frac{\pi}{2}].

c) \displaystyle D_f=\{(x,y,z)\in\mathbb{R}^3:\, xyz> 0\}. \displaystyle V_f=]-\infty,\infty[.