Svar Övning 7.1.3

SamverkanFlervariabelanalysLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(Ny sida: a) <math>f_{x_{1}}=\frac{x_{1}}{|\mathbf{x}|}</math>, <math>f_{x_{2}}=\frac{x_{2}}{|\mathbf{x}|}</math>, <math>f_{x_{3}}=\frac{x_{3}}{|\mathbf{x}|}</math> b) <math>f_{x_{1}}=2x_{1}</math...)
Nuvarande version (10 september 2014 kl. 11.51) (redigera) (ogör)
 
Rad 1: Rad 1:
a)
a)
-
<math>f_{x_{1}}=\frac{x_{1}}{|\mathbf{x}|}</math>,
+
<math>f'_{x_{1}}=\frac{x_{1}}{|\mathbf{x}|}</math>,
-
<math>f_{x_{2}}=\frac{x_{2}}{|\mathbf{x}|}</math>,
+
<math>f'_{x_{2}}=\frac{x_{2}}{|\mathbf{x}|}</math>,
-
<math>f_{x_{3}}=\frac{x_{3}}{|\mathbf{x}|}</math>
+
<math>f'_{x_{3}}=\frac{x_{3}}{|\mathbf{x}|}</math>
b)
b)
-
<math>f_{x_{1}}=2x_{1}</math>,
+
<math>f'_{x_{1}}=2x_{1}</math>,
-
<math>f_{x_{2}}=2x_{2}</math>,
+
<math>f'_{x_{2}}=2x_{2}</math>,
-
<math>f_{x_{3}}=2x_{3}</math>
+
<math>f'_{x_{3}}=2x_{3}</math>
c)
c)
-
<math>f_{x_{1}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{1}}{|\mathbf{x}|}</math>,
+
<math>f'_{x_{1}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{1}}{|\mathbf{x}|}</math>,
-
<math>f_{x_{2}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{2}}{|\mathbf{x}|}</math>,
+
<math>f'_{x_{2}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{2}}{|\mathbf{x}|}</math>,
-
<math>f_{x_{3}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{3}}{|\mathbf{x}|}</math>
+
<math>f'_{x_{3}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{3}}{|\mathbf{x}|}</math>

Nuvarande version

a) \displaystyle f'_{x_{1}}=\frac{x_{1}}{|\mathbf{x}|}, \displaystyle f'_{x_{2}}=\frac{x_{2}}{|\mathbf{x}|}, \displaystyle f'_{x_{3}}=\frac{x_{3}}{|\mathbf{x}|}

b) \displaystyle f'_{x_{1}}=2x_{1}, \displaystyle f'_{x_{2}}=2x_{2}, \displaystyle f'_{x_{3}}=2x_{3}

c) \displaystyle f'_{x_{1}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{1}}{|\mathbf{x}|}, \displaystyle f'_{x_{2}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{2}}{|\mathbf{x}|}, \displaystyle f'_{x_{3}}=\frac{1}{1+|\mathbf{x}|}\; \frac{x_{3}}{|\mathbf{x}|}