Svar Övning 9.2.1
SamverkanFlervariabelanalysLIU
(Skillnad mellan versioner)
(Ny sida: a) <math> \begin{pmatrix} 2x & 2y\\ e^{xy}+xye^{xy} & x^2e^{xy} \end{pmatrix} </math>) |
|||
(2 mellanliggande versioner visas inte.) | |||
Rad 1: | Rad 1: | ||
a) | a) | ||
+ | <math> | ||
+ | \begin{pmatrix} | ||
+ | 2x_1 & 2x_2\\ | ||
+ | (1+x_1x_2)e^{x_1x_2} & x_1^2e^{x_1x_2} | ||
+ | \end{pmatrix} | ||
+ | </math> | ||
+ | |||
+ | b) | ||
+ | <math> | ||
+ | \begin{pmatrix} | ||
+ | 5 & 2 & 0\\ | ||
+ | 0 & 1 & 4 \\ | ||
+ | 1 & 2 & -1 | ||
+ | \end{pmatrix} | ||
+ | </math> | ||
+ | c) | ||
<math> | <math> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
- | + | 5 & \cos x_2 \\ | |
- | + | x_2(1+\tan^2 x_1) & \tan x_1 \\ | |
+ | \arctan x_2 & \frac{x_1}{1+x_2^2} | ||
\end{pmatrix} | \end{pmatrix} | ||
</math> | </math> |
Nuvarande version
a) \displaystyle \begin{pmatrix} 2x_1 & 2x_2\\ (1+x_1x_2)e^{x_1x_2} & x_1^2e^{x_1x_2} \end{pmatrix}
b) \displaystyle \begin{pmatrix} 5 & 2 & 0\\ 0 & 1 & 4 \\ 1 & 2 & -1 \end{pmatrix}
c) \displaystyle \begin{pmatrix} 5 & \cos x_2 \\ x_2(1+\tan^2 x_1) & \tan x_1 \\ \arctan x_2 & \frac{x_1}{1+x_2^2} \end{pmatrix}