4.2 Kontinuitet
SamverkanFlervariabelanalysLIU
Rad 16: | Rad 16: | ||
<div class="ovning"> | <div class="ovning"> | ||
- | ===Övning 5.2. | + | ===Övning 5.2.2=== |
I vilka punkter är <math>f(x,y)= (x^2+y^2)\ln (x^2+y^2)</math> då <math>(x,y)\not=(0,0)</math> kontinuerlig? Kan vi definiera <math>f</math> i undantagspunkten så att <math>f</math> blir kontinuerlig även där? | I vilka punkter är <math>f(x,y)= (x^2+y^2)\ln (x^2+y^2)</math> då <math>(x,y)\not=(0,0)</math> kontinuerlig? Kan vi definiera <math>f</math> i undantagspunkten så att <math>f</math> blir kontinuerlig även där? | ||
Versionen från 23 augusti 2013 kl. 07.49
4.1 | 4.2 |
Övning 5.2.1
I vilka punkter är \displaystyle f(x,y)= (x^2+y^2)\ln (x^2+y^2) då \displaystyle (x,y)\not=(0,0) kontinuerlig? Kan vi definiera \displaystyle f i undantagspunkten så att \displaystyle f blir kontinuerlig även där?
Övning 5.2.2
I vilka punkter är \displaystyle f(x,y)= (x^2+y^2)\ln (x^2+y^2) då \displaystyle (x,y)\not=(0,0) kontinuerlig? Kan vi definiera \displaystyle f i undantagspunkten så att \displaystyle f blir kontinuerlig även där?
a) \displaystyle f(x,y)=\frac{xy}{x^2+y^2} då \displaystyle (x,y)\not=(0,0)
b) \displaystyle f(x,y)=\displaystyle\frac{(x+y)^4}{x^2+y^2} då \displaystyle (x,y)\not=(0,0)
c) \displaystyle f(x,y)=\displaystyle\frac{xy^2-y^2}{x^2+y^2-2x+1} då \displaystyle (x,y)\not=(1,0)
d) \displaystyle f(x,y)=\displaystyle{xe^{-1/\sqrt{x^2+y^2}}} då \displaystyle (x,y)\not=0