2.1 Övningar
Förberedande kurs i matematik 2
Teori | Övningar |
Övning 2.1:1
Tolka integralerna som areor och bestäm deras värde
a) | \displaystyle \displaystyle\int_{-1}^{2} 2\, dx | b) | \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx |
c) | \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx | d) | \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 2.1:2
Beräkna integralerna
a) | \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx | b) | \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx |
c) | \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx | d) | \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 2.1:3
Beräkna integralerna
a) | \displaystyle \displaystyle\int \sin x\, dx | b) | \displaystyle \displaystyle\int 2\sin x \cos x\, dx |
c) | \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx | d) | \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx |
Svar
Lösning a
Lösning b
Lösning c
Lösning d